
_ ■

P r i m e . A d v a n c e d
Programmer's Guide,
Volume 0:
Introduction and
Error Codes
Revision 22.0

DOC70066-3LA

Advanced Programmer's Guide,
Volume 0: Introduction

and Error Codes

Third Edition

Glenn S. Morrow

This guide documents the software operation
of the Prime Computer and its supporting
systems and utilities as implemented at
Master Disk Revision 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

Copyright Information
The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no
responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.
Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer,
Inc. DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime
INFORMATION CONNECTION, Prime INFORMATION EXL, MDL, MIDAS, MIDASPLUS,
MXCL, PRIME EXL, PRIME MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME
TIMER, PRIMAN, PRIMELINK, PRIMENET, PRIMEWAY, PRIMEWORD, PRIMIX,
PRISAM, PRODUCER, Prime INFORMATION/pc, PST 100, PT25, PT45, PT65, PT200,
PT250, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350,
2450, 2455, 2550, 2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955,
and 9955II are trademarks of Prime Computer, Inc.

Printing History
Prehminary Edition (DOC9229-1LA) January 1985 for Revision 19.4.0
First Edition (DOC10066-1LA) November 1985 for Revision 19.4.2
Second Edition CDOC10066-2LA) September 1987 for Revision 21.0
Third Edition CDOC10066-3LA) October 1988 for Revision 22.0

Credits
Editorial: Barbara Fowlkes
Project Support: Joan Karp, Nick Fichter
Graphics Support: Mingling Chang, Robert Alba
Document Preparation: Mary Mixon
Composition: Julie Cyphers, Sharon Temple
Production: Judy Gordon
Design: Carol Smith

Third Edition

How To Order Technical Documents
Follow the instructions below to obtain a catalog, a price list, and information on placing orders.
United States Only: Call Prime Telemarketing, toll free, at 1-800-343-2533, Monday through
Friday, 8:30 a.m. to 5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

Customer Support Center
Prime provides the following toll-free numbers for customers in the United States needing
service:

1-800-322-2838 (Massachusetts)
1-800-541-8888 (Alaska and Hawaii)
1-800-343-2320 (within other states)

For other locations, contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of this
book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

Third Edition in

Contents

About This Book

1 Calling Sequences and Coding Guidelines
Calling Sequence Conventions
General Coding Guidelines

vii

1-1
1-1
1-5

Appendices

A P R I M O S E r r o r C o d e s A - i
E r r o r C o d e P r e s e n t a t i o n A - 1
P R I M O S S t a n d a r d E r r o r C o d e s A - 2

B Alphabetical List of Error Messages bi

C New Features of Recent PRIMOS Revisions ci
N e w F e a t u r e s a t R e v i s i o n 2 2 . 0 C - l
N e w F e a t u r e s a t R e v i s i o n 2 1 . 0 C - 3
N e w F e a t u r e s a t R e v i s i o n 2 0 . 2 C - 7
N e w F e a t u r e s a t R e v i s i o n 2 0 . 0 C - 8

Master Index Index-1

About This Book

The Advanced Programmer's Guide is a four-volume series intended for programmers who are
experienced with both 50 Series1" computer systems and at least one high-level language
(preferably PL/I or FORTRAN). This series consists of four volumes:

• Advanced Programmer's Guide, Volume 0: Introduction and Error Codes
(DOC10066-3LA) (this volume)

• Advanced Programmer's Guide, Volume I: BIND and EPFs (DOC 10055-1 LA)
• Advanced Programmer's Guide, Volume II: File System (DOC10056-2LA)
• Advanced Programmer's Guide, Volume III: Command Environment

(DOC10057-1LA)

Users of this series should be familiar with the following Prime publications:

• PRIMOS User's Guide (DOC4130-5LA)
• Programmer's Guide to BIND and EPFs (DOC8691-1LA) and its update

(UPD8691-11A)
• Subroutines Reference I: Using Subroutines (DOC10080-2LA)
• Subroutines Reference II: File System CDOC10081-1LA) and its update

(UPD10081-12A)
• Subroutines Reference III: Operating System (DOC 10082-1LA) and its update

(UPD10082-12A)
• Subroutines Reference IV: Libraries and IIO CDOC10083-1LA) and its update

CUPD10083-12A)
• Subroutines Reference V: Event Synchronization CDOC10213-1LA)

Users of this series should also be familiar with Prime system architecture, as described in the
50 Series Technical Summary CDOC6904-2LA) and in the System Architecture Reference Guide
(DOC9473-2LA).

VII

Advanced Programmer's Guide

Specifics of This Volume
This volume contains reference information applicable to the subjects described in the other
volumes:

• An explanation of the presentation of subroutine calls and general coding guidelines
(Chapter 1)

• Standard error codes used by PRIMOS, along with their messages and meanings
(Appendices A and B)

• New features of recent PRIMOS revisions that may be of interest to advanced
programmers (Appendix C)

• A master index encompassing the entire series

Specifics of the Series
The Advanced Programmer's Guide series is designed for system-level programmers. It
describes the lowest-level interfaces supported by PRIMOS and its utilities. Higher-level
interfaces not described in this series include

• Language-directed I/O
• The applications library (APPLIB)
• The sort packages (VSRTLI, SyncSort/PRIME, and MSORTS)
• Data management packages (such as MPLUSLB and PRISAMLIB)
• Other subroutine packages

All of the above higher-level interfaces are described in other books, such as language reference
guides and the five volumes of the Subroutines Reference series.
This series documents low-level interfaces for use by programmers and engineers who are
designing new products, such as language compilers, data management software, electronic mail
subsystems, utility packages, and so on. Such products are themselves higher-level interfaces,
typically used by other products rather than by end users, and therefore, must use some or all of
the low-level interfaces described in this series for best results.

Because of the technical content of the subjects presented in this series, it is expected that these
guides will be regularly used only by project leaders, design engineers, and technical
supervisors, rather than by all programmers on a project. Most of the information in this series
deals with interfaces to PRIMOS that are typically used only in small portions of a structured
program, and with overall project design issues that should be considered before coding begins.
Once the project is designed and the PRIMOS interfaces are designed and coded, most of the
modules of a typical project can then be written by programmers whose knowledge of these
issues is minimal.

VIII

About This Book

Prime Documentation Conventions
The following conventions are used throughout this document. Examples illustrate the uses of
these conventions in typical applications.

Convention Explanation
UPPERCASE In calling sequence diagrams, words in

uppercase boldface represent the sub
routine name or keyword to be entered
as shown.

UPPERCASE Represent the data type of subroutine
W O R D S a r g u m e n t s ,
(not boldface)
lowercase In calling sequence diagrams, words in

lowercase represent the subroutine
arguments for which the user must
substitute a suitable variable.

Parentheses In calling sequence diagrams, paren-
() theses must be entered exactly as

shown.

Example
SLIST

HALF INT

(key, unit)

(key, unit, addr)

IX

Calling Sequences and Coding Guidelines

Calling Sequence Conventions
The Advanced Programmer's Guide series contains diagrams of the calling sequences of system
subroutines. These diagrams are intended to complement the discussion of the subroutines in the
Subroutines Reference series. Similar calling sequence diagrams are also found in an appendix
to Subroutines Reference V: Event Synchronization.

Figure 1-1 is a sample diagram of a calling sequence. Each calling sequence diagram occupies
one full page. The subroutine (or procedure) name is listed in the middle of the page, followed
on the same line by dummy parameter names listed in parentheses and separated by commas.
This is the basic calling sequence for the procedure.

Above this basic calling sequence are the input arguments; below the calling sequence are the
output arguments. An arrow connects each argument to a dummy parameter name. The direction
of these arrows indicates the flow of information. These arrows also visually connect parameter
names to information about the parameters. This information includes the argument's data type
and a brief description of the argument.

Some diagrams may contain other elements, such as

• A required value or a list of permitted values for keys or other parameters.
• An illustration of the format of an input or output argument.
• A dot and arrow indicating that a pointer to a data area must be supplied. Execution

of the subroutine writes information into this data area.

Data types are specified in a data type description language. This language is further described
in this chapter. You must convert the data type used here to the appropriate data type for your
programming language. In addition to the data type description language, this series often
includes PL/I or FORTRAN versions of structures.

Procedures that are functions return a function value. This return value and its data type are
illustrated below the name of the procedure itself.
In addition to showing the arguments and their data types, each calling sequence diagram

• Shows the calling sequence for a single type of operation performed by the procedure
• Illustrates the relationships between interdependent parameters in the calling sequence

T h i r d E d i t i o n 1 - 1

Advanced Programmer's Guide, Volume 0

Read a File

File Unit
Number

KSREAD

HALF HALF

Pointer to
Data Buffer

Number of Halfwords
to Read (Unsigned)

r 0 (Zero), to Read
at Current Position

INT
t

INT
t

PTR

I
HALF FULL
I N T I N T
* t

PRWF$$ (key, unit, addr (buffer), size, rel-posn, halfwords-read, code)

\ i t
H A L F ^ j H H A L F
I N T ^ „ ~ ~ ~ ~ ~ I N T

A R R A Y ' * ' '

HALF
IN T

Buffer to Which
Data Are Transferred

Standard
Error
Code

Number of
Halfwords
Actually Read

Side Effects: Contents of buffer elements halfwords-read +1 through size are
undefined after the operation if fewer halfwords than requested were read.

Figure 1-1
Sample Subroutine Calling Sequence

1-2 Third Edition

Calling Sequences and Coding Guidelines

Therefore, a multipurpose subroutine such as PRWF$$ is described using several different
calling sequence diagrams: one for reading a file, another for writing a file, and a third for
positioning within a file.
Some calling sequence diagrams contain dotted arrows between related arguments. These
relationships often involve a parameter (such as a character string) whose length is specified by
another parameter in the calling sequence.

Data Types
Table 1-1 lists the generic data types and their PL/I and FORTRAN equivalents that are used
throughout the Advanced Programmer's Guide series. (The diagrams in Subroutines Reference V
use PL/I data types.)

Table 1-1
Data Types and Their PL/1 and FORTRAN Equivalents

Data Type PL/I FORTRAN
HALF INT FIXED BIN(15) INTEGER*2
FULL INT FIXED BIN(31) INTEGER*4
n STRING CHARACTERS) EMTEGER*2 C(n+l)/2)
<=n STRING CHARACTER^) VARYING INTEGER*2 C(n+3)/2)
nBIT BIT(n) INTEGER*2 (Cn+15)/16) w/masking
PTR POINTER and ADDRC) DNTEGER*2 (3) and LOCC)
STRUC
ARRAY(n)

Structures are usually illustrated in the same calling sequence diagram or in another related
diagram, or their declarations are provided on a page near the diagram. Structures are also
known as record data types in other languages.

2Arrays are either a constant length which is indicated in parentheses, or a varying length
controlled by a parameter or a subfield in a parameter. Varying length arrays have dotted
arrows from the word ARRAY to the parameter Cor its subfield) that controls the length of
the array.

The last three data types in Table 1-1 are discussed more fully in the subsection entitled
Pointers, Arrays, and Structures, later in this chapter.
In cases where the length of an item is specified in the data type, such as <=128 STRING, and a
dotted arrow is also drawn to a parameter that defines the operative length, then the length in the
data type is the maximum length for that item.

If you are unsure as to the meaning of a keyword, arrow, or other illustrative mark, consult the
Subroutines Reference series for more information on the subroutine or data structure.

Third Edition 1-3

Advanced Programmer's Guide, Volume 0

Keys
Some subroutines take an input key argument. A key is a literal value that you use to specify the
operation to be performed by the routine. In most calling sequence diagrams that involve a key
argument, a list of valid (or appropriate) key values is provided. Each keyword corresponds to a
specific operatioa For example, the k$read key specifies a read operation.
When the construction of a key is complex, two or more lists of keywords are often shown,
enclosed in braces { }, with + signs to indicate addition. As with command formats, choose one
keyword from each list in braces. Specify the + signs in your program to indicate the addition of
these multiple keywords. For example, your program might specify a key value of
k$rdwr+k$ndam+k$getu.
To define keywords that have names beginning with K$, use a %INCLUDE or SINSERT
statement to insert the appropriate SYSCOM>KEYS.INS.language file into your program. See
the Subroutines Reference series for more information on this topic.

Standard Error Code

Many subroutines include a standard error code as a parameter. This is a HALF INT value
returned by the subroutine to indicate the degree of success encountered by the subroutine. Each
error code can be represented by an integer value or a mnemonic. All standard error code
mnemonics begin with E$. Always use these mnemonic values in your programs.
For example, after each subroutine call your program should always check the standard error
code to ensure that its value is E$OK (integer value 0). A value of E$OK means a successful
call. Other values indicate specific errors or conditions worth noting.

Appendix A contains a list of PRIMOS standard error codes along with a description of the
meaning of each code. This list is ordered numerically by error code number. Appendix B
contains an alphabetical list of the error message displayed for each error code. The alphabetical
list is cross-referenced with the numeric list.
To define standard error code mnemonics for your program, use a %INCLUDE or SINSERT
statement to insert the appropriate SYSCOM>EKRD.INS.language file into your program. See
the Subroutines Reference series for more information on this topic.

Side Effects
Where appropriate, the side effects of a subroutine are listed at the bottom of the calling
sequence diagram. Side effects are those actions taken by the procedure that are not obviously a
designed function of the procedure. For example, a side effect of a call to the TSRC$$
subroutine may change the cache attach point without notifying its caller.

1 _ 4 T h i r d E d i t i o n

Calling Sequences and Coding Guidelines

General Coding Guidelines
When writing programs that use standard PRIMOS subroutines, observe the following guidelines
to ensure that your programs continue to function normally on subsequent revisions of
PRIMOS:

• Your program must ignore any reserved or undefined information returned to it by a
subroutine. For example, if a 16-bit halfword contains one defined bit and fifteen
reserved bits, your program must mask off the fifteen reserved bits before analyzing
the halfword to determine the value of the one defined bit.

• Your program must zero-fill any reserved or undefined arguments that it passes to a
subroutine, except where otherwise specified.

• The maximum number of defined character values in a returned character string is the
operative length of the string; characters beyond that point have undefined values and
must be ignored. For example, a character string with a data type of 32 STRING that
has been returned to the caller along with an operative length of 13 (as indicated by
the dotted arrow in Figure 1-1) has undefined values for characters 14-32 in the
returned string.

• Arrays, structures, and similar items with operative lengths are considered undefined
beyond those operative lengths.

Pointers, Arrays, and Structures
A number of PRIMOS subroutines deal with arrays and structures. The PRWF$$ subroutine, for
example, uses an array as a buffer. Some of the ACL subroutines use structures to manipulate
access control lists. A subroutine that deals with an array or a structure requires a pointer to the
array or structure as part of its calling sequence.
Pointers, arrays, and structures are represented as a PL/I language construct in the following
format:

addr(target-object)

Va r i a b l e M e a n i n g
addr The literal string addr with the data type PTR (pointer)
target-object The name of the array or structure, enclosed in parentheses, as defined

in the program by a data declaration statement

Figure 1-1 shows a calling sequence containing a pointer to a buffer having the data type HALF
INT ARRAY.
In some cases, the array or structure serves as both an input and an output argument, although it
is not necessarily used to the same extent in both. For example, a structure specified as an input
argument might contain only a required version number that you set to a specific value, whereas

T h i r d E d i t i o n 1 - 5

Advanced Programmer's Guide, Volume 0

as an output argument the same structure may be partially or completely filled. For other
subroutines, you may completely fill a structure for input, and the called subroutine may only
slightly modify a structure on output. Drawings of the structure as seen on input (above the call
line) and output Cbelow the call line) illustrate input and output usage.
The representation of pointers and their target objects as two distinct entities serves two useful
purposes from the programmer's point of view:

• You can clearly distinguish between the pointer itself, which is typically an input
argument, and the target object, which can be either an input argument, an output
argument, or both.

• The data type of each entity can be independently shown.

Pointer Usage

Throughout this series, pointers are generally assumed to be three-halfword pointers. In most
cases, however, only two halfwords are actually used. The third halfword currently holds only
the byte offset within the halfword addressed by the first two halfwords. In fact, the third
halfword is examined only if the E bit Cfbr Extension bit) in the first halfword is set to 'l'b.

However, future changes to Prime systems may make more use of the third halfword. Therefore,
always reserve three halfwords for pointers, except in cases where they are embedded in
structures and the design of those structures is not under your control.

Because the third halfword of the pointer is referenced only when the E bit is set in the first
halfword, and because most PRIMOS subroutines never set the E bit (since they never use odd-byte
addressing), it is usually safe to allow for three-halfword pointers in calling sequences. However,
two precautions must be taken to make sure that three-halfword pointers are used properly.

• When passing a pointer to a subroutine, make sure that the data pointed to is aligned
on a halfword boundary. This is automatic if the data type is FIXED BIN or
CHARACTER VARYING, but not if the data type is BIT or CHARACTER
NONVARYING. In these latter cases, use the ALIGNED attribute to enforce
halfword alignment This ensures that arguments you pass to PRIMOS subroutines are
aligned on halfword boundaries. It also ensures that the E bit is not set. PRIMOS
does not set the E bit of a pointer that references an item beginning on a halfword
boundary. Many PRIMOS subroutines fail if they are passed a pointer that has the E
bit set.

• When you receive a pointer as a function value, be sure to receive it exactly as it is
returned by the function, that is, as either a two-halfword pointer or a three-halfword
pointer. The PL/I data type POINTER OPTIONS(SHORT) defines a two-halfword
pointer that is returned in the L register and that is accessible to most languages. The
PL/I data type POINTER defines a three-halfword pointer that cannot fit in the L
register, therefore, PL/I expects a pointer of this type to be returned in Field Address
Register 0 (FARO). Few other languages can access a function value that is a three-
halfword pointer.

1 _ g T h i r d E d i t i o n

Appendices

r
r

PRIMOS Error Codes

Error Code Presentation
This appendix contains an annotated list of the standard PRIMOS error codes. The error codes
are listed in numerical order. Appendix B contains a cross-reference listing of these error codes,
listed alphabetically by the text of the error message.

Each error code consists of a number, a mnemonic, and an error message. User programs should
always check the mnemonic value of an error code, not the numeric value or error message. You
can use the ERSPRINT subroutine to display an error message on your terminal or use the
ERSTEXT subroutine to return an error message to a variable in your program. These
subroutines are further described in Subroutines Reference III: Operating System.

The description of each error code is in the following format:

E$xxxx (nnn)
description of error

Variable
E$xxxx
nnn
text of error
message
description of error

text of error message

Meaning
The mnemonic for the error code
The numeric value of the mnemonic
The error message displayed by ERSPRINT or ERSTEXT for that
error code
The description of the error code

Mnemonics for error codes are defined by files in SYSCOM for several languages:

Language
C
FORTRAN 77
FORTRAN IV
Pascal
PL/I

Filename in SYSCOM
ERRD.INS.CC
ERRD.INS.FTN
ERRD.INS.FTN
ERRD.INS.PASCAL
ERRD.INS.PL1

Third Edition A-1

Advanced Programmer's Guide, Volume 0

PMA ERRD.INS.PMA
BASIC/VM not available
COBOL not available

Use the appropriate %INCLUDE (Pascal and PL/I), #include (C), or SINSERT (F77, FTN, and
PMA) in your program to provide definitions of all the standard error codes for your program.
Subroutines Reference I: Using Subroutines contains more information on these files.

Notes
Severity code numbers, sometimes returned by CPL programs, have
no correspondence in meaning with standard PRIMOS error codes
with the same numeric values. Severity codes are chosen arbitrarily
by the CPL programmer.
When running user programs that involve a subsystem such as DPTX,
you may encounter messages that are not listed in this appendix.
These messages are related to their respective subsystems, not to
PRIMOS. Refer to the appropriate subsystem documentation for
further information on these error codes.

PRIMOS Standard Error Codes

E $ O K (0) O p e r a t i o n c o m p l e t e d s u c c e s s f u l l y .
The operation completed successfully. No error was detected.

E $ E O F (1) E n d o f fi l e .
The end-of-file point was reached during an operation on a file system object
End-of-file errors may occur, for example, when

• Reading directory entries via DIRSSE, DIRSRD, DIRSLS, or RDENSS
• Positioning a file system object via PRWFSS or SGDRSS
• Reading data from a file via PRWFSS or RDLINS
• Attempting to open for reading a nonexistent member of a segment directory while

positioned at the end of that segment directory
The interpretation of this error depends upon the operation performed. For example, when
returned by PRWFSS while trying to read data from a file, it indicates that end-of-file was
reached but that some data may have been successfully read. However, when returned by
DIRSRD, ESEOF indicates that the end of the directory was reached and no entry was
returned to the calling program.

A - 2 T h i r d E d i t i o n

PRIMOS Error Codes

E $ B O F (2) B e g i n n i n g o f fi l e .
An attempt was made to position a file system object to a point before the beginning of the
file. This error results if PRWFSS is called with a relative-position key and a negative relative
position that would, when applied to the current position, produce an absolute position whose
value is less than zero.

E $ U N O P (3) U n i t n o t o p e n .
The file-unit is closed or is not open for the type of operation being requested. For example,
an attempt to read from a file that is open only for writing causes this error, as does an
attempt to write to a file that is open only for reading.
This error code is also returned if an attempt is made to truncate a file that is not open for
writing.

E $ U I U S (4) U n i t i n u s e .
The unit number supplied to a subroutine that is attempting to open a file system object is
already in use. This error occurs only when static file-unit allocation is used (that is, when the
kSgetu subkey is not used).

E $ F I U S (5) F i l e i n u s e .
The file system object being accessed is already open on another file-unit or by another user.
This error occurs if an attempt is made to

• Open an object that is already open by another user or by the same user on another
file-unit, and the read/write lock of the object disallows the attempt

• Rename an object that is open by another user or by the same user on another file-
unit

• Rename a file directory that is in use as an attach point by any user
• Set a quota on a nonquota directory that is in use or contains other files or directories

that are in use
• Change the open mode of a file-unit, by calling CHSMOD or SRCHSS (with the

kScacc key), when the object is open by another user or by the same user on another
file-unit and the new open mode conflicts with the other open mode

• Truncate a file or segment directory that is open by another user or by the same user
on another file-unit

• Access a file that is open for VMFA read

E $ B P A R (6) B a d p a r a m e t e r .
An invalid value or combination of values was supplied to a subroutine. Many system
subroutines are capable of returning this error code. If this error occurs, check the parameter
values used in your subroutine call against the description in the Subroutines Reference series.

T h i r d E d i t i o n A - 3

Advanced Programmer's Guide, Volume 0

E $ N A T T (7) N o d i r e c t o r y a t t a c h e d .
Usually occurs when the directory to which the user is attached is removed from the system,
as when a disk is shut down, or in the case of a network failure when attached to a directory
on a remote disk. Use one of the ATS subroutines, or the ATTACH or ORIGIN command, to
reestablish an attach point.

E $ F D F L (8) D i r e c t o r y e n t r y l i s t i s f u l l .
An attempt was made to add an entry to a directory that does not have room for the entry.
Such entries include entries for newly created file system objects, new entries for name
changes of existing objects, ACL information placed on a file system object, and so on.
FIX_DISK may compress such a directory sufficiently to allow new entries to be added (if
the -UFD_COMPRESSION and -FIX options are used), but, because a directory must reside
in a single segment, there is a limit of approximately 4000 entries per directory even in a
fully compressed directory. (This limit varies according to the lengths of objectnames, ACL
information present, and the current state of directory fragmentation.)

E $ D K F L (9) D i s k i s f u l l .
The operation requires an additional record to be allocated on a disk partition, but all records
on that partition are already allocated. Use the AVAIL command to display the number of
total and available records on a disk partition.
Some operations are nonrecoverable after returning this error code. For example, the WTLINS
subroutine does not restore the file location pointer to the original location when it encounters
this error; the file location is undefined. On the other hand, the PRWFSS subroutine does
reset the file location pointer to the value it held before the disk full error was encountered.

E $ N R I T (1 0) I n s u f fi c i e n t a c c e s s r i g h t s .
The operation could not be performed because the user running the program has insufficient
access to perform the operation. In most cases, access is determined by either the ACL placed
on a file system object or the password protection. In some cases, only the System
Administrator or the supervisor terminal user (User 1) may perform the operation. In a few
cases, such as calling the LOGOSS subroutine, access is determined by matching user names.
Other cases exist, as indicated in the description of the subroutine that returned this error
code.

E $ F D E L (1 1) F i l e o p e n o n d e l e t e .
An attempt to delete a file, segment directory, or file directory failed because the object was
either in use by another user, in use by the same user on another file-unit, or an EPF open for
VMFA read.

E $ N T U D (1 2) N o t a d i r e c t o r y .
The attempted operation requires the target file system object to be a file directory, but it is
not a file directory.

A - 4 T h i r d E d i t i o n

PRIMOS Error Codes

E $ N T S D (1 3) N o t a s e g m e n t d i r e c t o r y .
The attempted operation requires the target file system object to be a segment directory, but it
is not a segment directory.

E $ D I R E (1 4) O p e r a t i o n i l l e g a l o n d i r e c t o r y .
The object being referenced is a file directory or a segment directory. The requested
operation, or the subroutine called to perform it, cannot act on a directory.

E $ F N T F (1 5) N o t f o u n d .
The target of the operation does not exist. Typically, the target is a file system object, but it
can be any entity whose existence or nonexistence can be determined.

E $ F N T S (1 6) N o t f o u n d i n s e g m e n t d i r e c t o r y .
The desired entry number was not found in the segment directory opened on the specified
file-unit Either no entry was found at the current position, or the specified entry could not be
found by searching the segment directory.

E $ B N A M (1 7) I l l e g a l n a m e .
The name supplied as a parameter for the operation does not meet the syntactic requirements
for the corresponding object ESBNAM is also returned by the LOGOSS subroutine.

E $ E X S T (1 8) A l r e a d y e x i s t s .
The object to be created already exists.

E $ D N T E (1 9) D i r e c t o r y i s n o t e m p t y .
An operation, such as the deletion of a directory, cannot be performed because the directory
is not empty.

E$SHUT (20)
Not currently returned by PRIMOS.

E $ D I S K (2 1) D i s k I / O e r r o r .
The FORCEW subroutine returns this error code if a disk error occurred during the forced
writing of locate buffers. Other file system and low-level disk subroutines may return this
error code if a disk error occurs.

E $ B D A M (2 2) B a d D A M fi l e .
EPFSMAP or EPFSRUN return this error code if the EPF DAM file structure has been
corrupted.

T h i r d E d i t i o n A - 5

Advanced Programmer's Guide, Volume 0

E $ P T R M (2 3) P o i n t e r m i s m a t c h f o u n d .
Many PRIMOS subroutines (for example, RDLINS and WTLINS) return this error code if a
pointer mismatch is detected. This is usually caused by a corrupted disk. Run FIX_DISK to
repair the disk.

E $ B P A S (2 4) B a d p a s s w o r d .
The password specified does not match the actual password.

E$BCOD (25)
Not currently returned by PRIMOS.

E $ B T R N (2 6) B a d t r u n c a t e o f s e g m e n t d i r e c t o r y .
SGDRSS returns this error code if an attempt was made to truncate a segment directory that
has members beyond the desired truncation point Such members must be removed before the
truncation operation can succeed.

E $ O L D P (2 7) O l d p a r t i t i o n .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ B K E Y (2 8) B a d k e y .
Many PRIMOS subroutines use this error code to indicate that a key argument supplied by the
caller is not a valid value. Check the description of the subroutine being called for valid
values for the key argument

E $ B U N T (2 9) B a d u n i t n u m b e r .
Either an invalid file-unit number was supplied to a system subroutine or an invalid device
unit number was supplied.
Invalid File-unit Number: The file-unit number supplied is invalid (out of range). Note
that file-units 1-128 are valid file-unit numbers (unless the System Administrator has reduced
the number of valid file-units by using the FILUNT directive in the system configuration
file). Larger file-units may become valid as a user uses more dynamically allocated units.
Invalid Device Unit Number: The device unit number is invalid. The range of valid unit
numbers depends upon the type of device involved. CSee the ASSIGN command in the
PRIMOS Commands Reference Guide.)

E $ B S U N (3 0) B a d s e g m e n t d i r e c t o r y u n i t .
The file-unit you specified was not a segment directory unit. This error code is not returned
by currently used subroutines; it may be returned by old programs that use obsolete
subroutine calls.

A-6 Third Edition

PRIMOS Error Codes

r
E $ S U N O (3 1) S e g m e n t d i r e c t o r y u n i t n o t o p e n .

An operation was attempted on a segment directory entry when the specified segment
directory file-unit was not open, or was not open for the type of operation requested. The
SRCHSS, SGDRSS, SGDSOP, SGDSEX, and SGDSDL subroutines may return this error
code.

E $ N M L G (3 2) N a m e i s t o o l o n g .
A file system objectname is too long. For example, this error code is returned if a call to
APSFXS to append a suffix to the specified filename would result in a filename or a
pathname longer than PRIMOS allows.

E $ S D E R (3 3) S e g m e n t d i r e c t o r y e r r o r .
SGDRSS or SGDSOP return this error code when the segment directory member being
opened is not a SAM or DAM file or a SAM or DAM segment directory. Contact your
System Administrator or system operations staff to determine whether the situation can be
corrected by file system maintenance.

E $ B U F D (3 4) D i r e c t o r y i s d a m a g e d .
Integrity checking performed by many file system subroutines has detected an integrity error
in the structure of a file directory. Contact your System Administrator or system operations
staff to determine whether the situation can be corrected by file system maintenance.

E $ B F T S (3 5) B u f f e r i s t o o s m a l l .
Either a caller-supplied buffer is too small to hold the data to be returned, or a buffer internal
to the subroutine is too small to hold the data. In some cases, the error indicates that the
requested operation could not be performed. In other cases, the operation may have been
performed, but the data to be returned was truncated to fit into the caller-supplied buffer.
Check the description of the subroutine you are calling to determine the appropriate error
recovery.

E $ F I T B (3 6) F i l e i s t o o b i g .
SGDRSS returns this error code if the segment directory on which it is operating is discovered
to be longer than 131,072 halfwords (65,536 entries).

E $ N U L L (3 7) (n o m e s s a g e)
This error code does not have any specific meaning attached to it. If specified in a call to
ERSPRINT or ERSTEXT, this error code returns a null string. Many programs use ESNULL
in calls to the obsolete subroutine ERRPRS, or to the ERSPRINT and ERSTEXT subroutines
when the only error message desired is a user-specified error message.

T h i r d E d i t i o n A - 7

Advanced Programmer's Guide, Volume 0

E $ I R E M (3 8) I l l e g a l r e m o t e r e f e r e n c e .
An operation was attempted that requires a reference to a remote node on the network. No
PRIMOS support exists for such a reference. For example, this error code is returned when an
attempt is made to spawn a phantom either while attached to a remote directory or while
using a remote command file or CPL program.

E $ D V I U (3 9) D e v i c e i n u s e .
An attempt was made to assign a peripheral device, such as a magnetic tape drive, that was
already assigned to another user.

E $ R L D N (4 0) R e m o t e l i n e i s d o w n .
The system being referenced cannot be reached from the local system. No disks or other
resources on that remote system can be accessed.

E $ F U I U (4 1) F i l e u n i t s a l l i n u s e .
The operation could not proceed because the system lacks either available file-units or
available named semaphores.
No Available File-units: No more file-units are available for the calling process. This
usually indicates that the program is not closing units it has finished using, since the number
of available file-units is usually very large.
This error may also indicate that a remote system being used by the calling process has run
out of file-units on which to handle this process's remote requests.
No Available Named Semaphores: No more semaphores are available on the system for
access via the named-semaphore subroutines. Use the STATUS SEMAPHORES command to
display information on both numbered and named semaphores. Typically, the SEMSOP
subroutine returns this error code if it refers to the lack of availability of named semaphores.

E $ D N S (4 2) D e v i c e n o t s t a r t e d .
PRIMOS returns this error code if a low-level operation is requested on a device that is not started.

E $ T M U L (4 3) T o o m a n y s u b d i r e c t o r y l e v e l s .
The QSREAD and QSSET subroutines and programs that perform treewalks of subdirectories
return this error code if the number of nested subdirectories exceeds the implementation-
defined maximum.

E$FBST (44)
Not currently returned by PRIMOS.

E $ B S G N (4 5) B a d s e g m e n t n u m b e r .
An invalid (out-of-range) segment number was specified. For example, an attempt was made
to set access on a segment (not a segment directory) with an invalid number via SEGACS.
This error code is also returned by the MMSMLPA and MMSMLPU subroutines.

A - 8 T h i r d E d i t i o n

PRIMOS Error Codes

E $ F I F C (4 6) F A M - i n v a l i d f u n c t i o n c o d e .
PRIMOS uses this error code internally. It is not currently returned to the user.

E$TMRU (47)
Not currently returned by PRIMOS.

E $ N A S S (4 8) D e v i c e n o t a s s i g n e d .
An attempt was made to perform an operation on a peripheral device (such as a magnetic tape
unit) that is not assigned to the user.

E$BFSV (49)
Not currently returned by PRIMOS.

E $ S E M O (5 0) S e m a p h o r e o v e r fl o w .
SEMSNF returns this error code if the number of outstanding notifies on the semaphore is
already 32,766.

E $ N T I M (5 1) N o t i m e r .
SEMSTN returns this error code if no timers are available to place on semaphores. Because of
the potential lack of timers for numbered semaphores, you may wish to have your program
use named semaphores and use the SEMSTW subroutine to wait for a specified amount of
time.

E$FABT (52)
Not currently returned by PRIMOS.

E$FONC (53)
Not currently returned by PRIMOS.

E $ N P H A (5 4) N o p h a n t o m s a v a i l a b l e .
An attempt to spawn a phantom (by calling PHNTMS or PHANTS) failed because all
phantoms are already in use.

E $ R O O M (5 5) N o r o o m .
More entries have been returned to a fixed-length table than the table has room for. Some
subroutines return this error code after writing as many entries as possible into the table. This
error code is also returned by storage allocation subroutines that do not signal conditions
when they cannot find sufficient memory.

E $ W T P R (5 6) D i s k i s w r i t e - p r o t e c t e d .
On a write-protected disk, you cannot open an object for writing, create an object, or change
the attributes of an object

T h i r d E d i t i o n A - 9

Advanced Programmer's Guide, Volume 0

E $ I T R E (5 7) I l l e g a l t r e e n a m e .
The pathname that was supplied to ATS, FELSDL, SRSFXS, TSRCSS, or that is on a
command line does not conform to the syntax rules for a pathname. See the PRIMOS User's
Guide for a description of the syntax of a pathname.

E$FAMU (58)
Not currently returned by PRIMOS.

E $ T M U S (5 9) T o o m a n y u s e r s .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ N C O M (6 0) N u l l c o m m a n d l i n e .
The PRIMOS command environment listener uses this error code internally to distinguish a
null command line from a successfully invoked command. It is not currently returned to the
user.

E $ N F L T (6 1) N o f a u l t f r a m e .
CNSIGS returns this error code to indicate that it could not find a condition frame in which to
set the continue_sw bit to 'l'b before it found the end of the stack. This error probably results
from calling CNSIGS outside of an on-unit.

E $ S T K F (6 2) B a d s t a c k f o r m a t .
PRIMOS subroutines, such as CNSIGS, use this error code to indicate that the stack seems to
be circular. This may be due to a circular stack or a circular list of on-units. The stack is
considered circular if approximately 20,000 stack frames have been examined without finding
the desired frame or the end of the stack. The list of on-units for a particular stack frame is
considered circular if approximately 1,000 on-units have been examined without finding the
desired on-unit or the end of the list

E $ S T K S (6 3) B a d s t a c k f o r m a t s i g n a l l i n g .
The condition signaling mechanism generates this error code upon detection of a bad stack
format when it calls the command environment reinitialization subroutine. The error code
itself is not returned by any PRIMOS subroutine.

E $ N O O N (6 4) N o o n - u n i t f o u n d .
A spawned phantom encountered an error during startup that cannot be handled during
startup. Or, a crawlout condition occurred while the process was in Ring 3, indicating a
possible internal error or an error in a user program.

A - 1 0 T h i r d E d i t i o n

PRIMOS Error Codes

E $ C R W L (6 5) F a t a l e r r o r i n c r a w l o u t .
An attempt was made to crawl out from one ring to another ring of equal or greater privilege,
an invalid crawlout was attempted, or a new condition was signaled during a crawlout In all
cases, this error code is used only in the call to the subroutine that reinitializes the user's
command environment, and is not returned by any PRIMOS subroutine to a calling program.

E $ C R O V (6 6) S t a c k o v e r fl o w i n c r a w l o u t .
Insufficient room exists on the Ring 3 stack to handle a crawlout from Ring 0 or Ring 1, or
insufficient room exists due to a warm start following a system halt caused by a Ring 0 stack
overflow by the user's process. This error code is used only in the call to the subroutine that
reinitializes the user's command environment, and is not returned by any PRIMOS subroutine
to a calling program.

E $ C R U N (6 7) C r a w l o u t u n w i n d f a i l e d .
The stack could not be unwound during a crawlout. This error code is used only in the call to
the subroutine that reinitializes the user's command environment, and is not returned by any
PRIMOS subroutine to a calling program.

E $ C M N D (6 8) B a d c o m m a n d f o r m a t .
The standard command processor (STDSCP or CPS) returns this error code if the command
line is truncated because it is too long, if the command name does not conform to filename
syntax rules, or if the command name is more than 32 characters long.

E $ R C H R (6 9) R e s e r v e d c h a r a c t e r .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ N E X P (7 0) C o r r u p t i o n d e t e c t e d d u r i n g u s e o f E X I T.
PRIMOS has detected a stack frame that indicates the bottom of a static-mode program's
stack when there is no known static-mode program suspended in the user's process. Such a
situation is rarely encountered except in an errant program; it may be detected when a
program calls the EXIT subroutine, in which case it causes the user's command environment
to be reinitialized.

E $ B A R G (7 1) B a d a r g u m e n t i n c o m m a n d .
An argument, such as a key or a pathname, is invalid, either because it is unrecognized or because
it conflicts with other arguments. An unrecognized argument can occur if a required data area is
not allocated. E$B ARG is also used to indicate an invalid argument to a PRIMOS command.

E $ C S O V (7 2) C o n c e a l e d s t a c k o v e r fl o w .
PRIMOS has detected that the user's process has overflowed its Ring 0 concealed stack,
which is an internal error. This error code is used only in the call to the subroutine that
reinitializes the user's command environment, and is not returned by any PRIMOS subroutine
to a calling program.

T h i r d E d i t i o n A - 1 1

Advanced Programmer's Guide, Volume 0

E $ N O S G (7 3) S e g m e n t d o e s n o t e x i s t .
A reference was made to a nonexistent segment when calling a PRIMOS subroutine to
manipulate a segment's access rights or when attempting to change the availability of the last
page of a segment

E $ T R C L (7 4) C o m m a n d l i n e t r u n c a t e d .
Subroutines that read a command line or expand text using the abbreviation preprocessor
return this error code to indicate that the command line or the expanded text was longer than
could be held in the buffer, and was, therefore, truncated.

E $ N D M C (7 5) N o S M L C D M C c h a n n e l s .
No further DMC channels are available for synchronous communications lines.

E $ D N A V (7 6) D e v i c e n o t a v a i l a b l e .
The requested peripheral device, such as a magnetic tape unit, is not available.

E $ D A T T (7 7) D e v i c e a l r e a d y a t t a c h e d .
The requested peripheral device is already attached to the user's process.

E $ B D A T (7 8) B a d o u t p u t d a t a .
An incorrect data count or invalid data format exists. The SRSFRJLS subroutine returns this
error code if it encounters an invalid pointer in a linked list. The MMSMLPA and
MMSMLPU subroutines return this error code if you specify a page that cannot be operated
on. ESBDAT is also returned by the LNSSET subroutine.

E $ B L E N (7 9) B a d l e n g t h .
The specified buffer length is invalid. The ASSLST and ASSSET subroutines return ESBLEN
if the buffer length is not large enough.

E $ B D E V (8 0) B a d d e v i c e n u m b e r .
An invalid number for a peripheral device, such as a communications device, was specified.

E $ Q L E X (8 1) Q u e u e l e n g t h e x c e e d e d .
An internal queue cannot hold another item.

E $ N B U F (8 2) N o b u f f e r s p a c e .
An attempt to acquire internal buffer space failed.

E $ I N W T (8 3) I n p u t w a i t i n g .
Pending input must be read before output can be sent to the peripheral device.

A-12 Third Edition

PRIMOS Error Codes

E $ N I N P (8 4) N o i n p u t a v a i l a b l e .
No input from the peripheral device is pending.

E $ D F D (8 5) D e v i c e f o r c i b l y d e t a c h e d .
The peripheral device was forcibly detached from the user's process; therefore, the desired
operation cannot be performed.

E $ D N C (8 6) D P T X n o t c o n f i g u r e d .
An attempt was made to operate a peripheral device that requires DPTX to be configured on
the system.

E $ S I C M (8 7) I l l e g a l 3 2 7 0 c o m m a n d .
An attempt to use an invalid 3270-class command code was made.

E $ S B C F (8 8) B a d d e v i c e n u m b e r c o p i e d .
An invalid device number was copied during an output operation to a 3270-class device.

E$VKBL (89)
Not currently returned by PRIMOS.

E $ V I A (9 0) I n v a l i d A I D b y t e .
An invalid or nonexistent AID byte was supplied in the buffer for a 3270-class device.

E $ V I C A (9 1) I n v a l i d c u r s o r a d d r e s s .
A cursor address in a cursor-addressing command is invalid or missing.

E $ V I F (9 2) I n v a l i d fi e l d a d d r e s s .
A field address in a field-addressing command is invalid or missing.

E $ V F R (9 3) F i e l d r e q u i r e d .
An invalid field address was supplied for a formatted screen.

E $ V F P (9 4) F i e l d p r o h i b i t e d .
A Set Buffer Address (SBA) command was performed in an unformatted buffer for a 3270-
class device.

E $ V P F C (9 5) P r o t e c t e d fi e l d c h e c k .
An attempt was made to write into a protected field on the screen.

T h i r d E d i t i o n A - 1 3

Advanced Programmer's Guide, Volume 0

E$VNFC (96)
Not currently returned by PRIMOS.

E $ V P E F (9 7) P a s t e n d o f fi e l d .
An attempt was made to write past the end of a field on the screen.

E$VIRC (98)
Not currently returned by PRIMOS.

E $ I V C M (9 9) M a g t a p e c o m m a n d i n v a l i d .
PRIMOS returns this error code if an invalid magnetic tape operation is requested.

E $ D N C T (1 0 0) D e v i c e n o t c o n n e c t e d .
An operation was attempted on a peripheral device that was not connected to the system or to
the user's process.

E $ B N W D (1 0 1) B a d n u m b e r o f w o r d s .
An invalid number of halfwords was specified as the size of the buffer.

E $ S G I U (1 0 2) S e g m e n t i n u s e .
An attempt was made to copy a segment to another segment that already exists. CThis refers
to memory segments, not to segment directories or their members.)

E $ N E S G (1 0 3) N o t e n o u g h s e g m e n t s .
Insufficient system segments are available for a program to be invoked or for additional
storage to be acquired.

E$SDUP (104)
Not currently returned by PRIMOS.

E $ I V W N (1 0 5) I n v a l i d V M F A w i n d o w n u m b e r .
An EPF was corrupted, because it contains invalid VMFA window numbers. Rebuild the EPF
by using BIND.

E $ W A I N (1 0 6) W i n d o w a l r e a d y i n a d d r e s s s p a c e .
PRIMOS uses this error code internally when mapping an EPF to memory to indicate that the
EPF was already mapped to memory for this process. ESWAIN is not currently returned to
the user.

A - 1 4 T h i r d E d i t i o n

PRIMOS Error Codes

E $ N M V S (1 0 7) N o m o r e V M F A s e g m e n t s .
Insufficient VMFA segments are available in the system to map in an EPF. Ask your System
Administrator to increase, if possible, the number of segments available to your process.
Meanwhile, removing inactive EPFs from memory may temporarily alleviate the problem.

E $ N M T S (1 0 8) N o m o r e t e m p o r a r y s e g m e n t s .
Insufficient temporary segments are available in the system to map in the impure procedure
code of an EPF (or the pure procedure code of a remote EPF or an EPF being debugged with
DBG). Ask your System Administrator to adjust (via NSEG) the number of temporary
segments on your system. Meanwhile, removing inactive EPFs from memory may temporarily
alleviate the problem.

E $ N D A M (1 0 9) N o t a D A M fi l e .
An attempt was made to open a file for VMFA-read (via the kSvmr key) when the file is not
a DAM file.

E $ N O V A (1 1 0) N o t o p e n f o r V M F A .
The file-unit number supplied to EPFSRUN or EPFSMAP does not identify a unit open for
VMFA-read (via the kSvmr key). See Volume III of this series for information on how to call
EPFSRUN or EPFSMAP.

E$NECS (111)
Not currently returned by PRIMOS.

E $ N R C V (1 1 2) R e c e i v e e n a b l e d r e q u i r e d .
SMSGS is not allowing you to send a message because you are rejecting messages of the
same type (immediate or deferred) that you are sending to another user.

E $ U N R V (1 1 3) U s e r n o t r e c e i v i n g n o w .
The user to whom you are sending a message via SMSGS is rejecting immediate (and
possibly also deferred) messages.

E $ U B S Y (1 1 4) U s e r b u s y , p l e a s e w a i t .
SMSGS was unable to send a message to a user, either because the receiver already had a
deferred message waiting to be displayed, or because the receiver's terminal output buffer was
full and, therefore, an immediate message could not be sent

E $ U D E F (1 1 5) U s e r u n a b l e t o r e c e i v e m e s s a g e s .
The user number specified in a call to SMSGS identifies a user who is not logged in to the
system, but who is logged in either remotely to another system on the network or through the
system from one node to another.

T h i r d E d i t i o n A - 1 5

Advanced Programmer's Guide, Volume 0

E $ U A D R (1 1 6) U n k n o w n a d d r e s s e e .
The user number specified in a call to SMSGS does not correspond to a logged-in user or the
user name specified could not be found in the list of logged-in users on the system.

E $ P R T L (1 1 7) M e s s a g e o p e r a t i o n p a r t i a l l y b l o c k e d .
Not all of the users who were the target of a message sent by SMSGS received the message
(perhaps because they are deferring or rejecting messages).

E $ N S U C (1 1 8) O p e r a t i o n u n s u c c e s s f u l .
When returned by the inter-user message facility (the SMSGS subroutine), this error code
indicates that the message reached none of the potential recipients. When returned by the
storage allocation subroutines (STRSFS, for example), this error code indicates a corrupted
memory allocation structure. Also returned by IOCS$_GET_LOGICAL_UNTT. This error
code is used as a generic positive severity code with a message slightly more meaningful than
that displayed for ESEOF and ESNULL.

E$NROB (119)
Not currently returned by PRIMOS.

E $ N E T E (1 2 0) N e t w o r k e r r o r d e t e c t e d .
A problem occurred with a remote file access. Retry the operation. If this is not successful,
close all file-units on the remote system and attach to a directory on a different system before
retrying the remote access.

E $ S H D N (1 2 1) D i s k h a s b e e n s h u t d o w n .
The disk on which the file system object resides was shut down. The disk is not available for
use until the system operator has reenabled use of the disk.

E $ U N O D (1 2 2) U n k n o w n n o d e n a m e .
A subroutine that takes a node name has found that the named node does not exist.

E $ N D A T (1 2 3) N o d a t a f o u n d .
No data was found. For example, a call to LONSR to read phantom logout information
returns this error code if there is no additional record of any phantom logout. A call to
LNSSET returns this error code if the EPF contains no library information.

E $ E N Q D (1 2 4) E n q u e u e d o n l y .
A cross-process signaling message has been enqueued, but the user has not yet received the
corresponding signal. This may be due to a low or idle user priority level or the message may
have been deferred.

A - 1 6 T h i r d E d i t i o n

^ >

PRIMOS Error Codes

E $ P H N A (1 2 5) P r o t o c o l h a n d l e r n o t a v a i l a b l e .
The desired communications protocol handler is not available.

E $ I W S T (1 2 6) E $ I N W T e n a b l e d b y c o n f i g u r a t i o n .
An attempt to set attributes for a device failed because input was waiting, and the
configuration file specified inhibition of this operation when input is waiting.

E $ B K F P (1 2 7) B a d k e y f o r t h i s p r o t o c o l .
An invalid key was supplied either in a call involving a communications device or when
validating a system parameter.

E $ B P R H (1 2 8) B a d p r o t o c o l h a n d l e r s p e c i f i e d .
An internal error in DPTCFG occurred.

E $ A B T I (1 2 9) I / O a b o r t i n p r o g r e s s .
An I/O abort was occurring during an attempt to output data or set attributes for a
communications device.

E $ I L F F (1 3 0) I l l e g a l D P T X fi l e f o r m a t .
An invalid file format for the configuration file read during DPTX initialization exists.

E $ T M E D (1 3 1) T o o m a n y e m u l a t e d e v i c e s .
DPTX did not initialize because there are too many devices to emulate.

E $ D A N C (1 3 2) D P T X a l r e a d y c o n f i g u r e d .
An attempt was made to configure DPTX after it was already configured.

E $ N E N B (1 3 3) R e m o t e n o d e n o t e n a b l e d .
A remote operation cannot be performed because the remote node is not allowing remote file
access.

E $ N S L A (1 3 4) N o N P X s l a v e s a v a i l a b l e .
The remote system on which the file system object resides has become overloaded with
remote file access requests. The operation may be attempted later, with possible success.

E $ P N T F (1 3 5) P r o c e d u r e n o t f o u n d .
The LINKAGE_FAULT$ condition was raised in the slave process on the remote system
while attempting to access a remote file system object.

T h i r d E d i t i o n A - 1 7

Advanced Programmer's Guide, Volume 0

E $ S V A L (1 3 6) S l a v e v a l i d a t i o n e r r o r .
The user's remote ID for the system on which the file system object resides is incorrect. The
user must use the ADD_REMOTE_ID command, described in the PRIMOS Commands
Reference Guide, to establish the correct remote ID for the system. Until then, all attempts to
access data on that remote system will fail with this error code.

E $ I E D I (1 3 7) I / O e r r o r o r d e v i c e i n t e r r u p t .
An error or interrupt occurred on a peripheral device on which low-level operations are being
performed by the user program.

E $ W M S T (1 3 8) W a r m s t a r t o c c u r r e d .
A peripheral device should be reinitialized because a warm start was performed on that
system.

E $ D N S K (1 3 9) P I O i n s t r u c t i o n d i d n o t s k i p .
A Programmed I/O instruction to a peripheral device did not skip during a low-level operation
being performed by a user program.

E $ R S N U (1 4 0) R e m o t e s y s t e m n o t u p .
The remote system on which the file system object resides is in the process of starting up, but
is not yet honoring Remote File Access (RFA) requests because the operator has not yet set
the date and time at the supervisor terminal for that system.

E$S18E (141)
Not currently returned by PRIMOS.

E $ N F Q B (1 4 2) N o f r e e q u o t a b l o c k s .
Internal storage used to keep track of quota information for directories was exhausted.

E $ M X Q B (1 4 3) M a x i m u m q u o t a e x c e e d e d .
The operation requires an additional record to be allocated in a directory, but the maximum
quota on that directory or on one of its parent directories was already reached.
Some Cbut not all) operations are nonrecoverable after returning this error code. For example,
the WTLINS subroutine does not restore the file location pointer to the original location when
it encounters this error, the file location is undefined. Other operations, such as the PRWFSS
subroutine, reset the file location pointer to the value it held before the quota-exceeded error
was encountered.

E $ N O Q D (1 4 4) N o t a q u o t a d i s k .
An attempt was made to perform a quota operation on a nonquota (pre-Rev. 19 format) disk.
The DTRSCR, QSREAD, and QSSET subroutines may all return this error code.

A _ 1 8 T h i r d E d i t i o n

PRIMOS Error Codes

E $ Q E X C (1 4 5) Q u o t a s e t b e l o w c u r r e n t u s a g e .
A call to QSSET set the maximum quota to a value that is below the number of records
currently used in the directory. Although this is not an error, it does mean that no new records
can be used in the directory until enough records are deleted so that the number of records
used falls below the maximum quota.

E $ I M F D (1 4 6) O p e r a t i o n i l l e g a l o n M F D .
An operation was attempted that is invalid on the MFD for a disk partition.

E $ N A C L (1 4 7) N o t a n A C L d i r e c t o r y .
An attempt to set or list ACL information was made for a file system object that resides in a
password directory.

E $ P N A C (1 4 8) P a r e n t n o t a n A C L d i r e c t o r y .
An attempt to set or list ACL information was made for a file system object whose parent
directory is a password directory rather than an ACL directory.

E $ N T F D (1 4 9) N o t a fi l e o r d i r e c t o r y .
The target object of a call to ACSCAT, ACSDFT, or KLMSIF is not a file, a segment
directory, or a file directory. You cannot protect an access category with another access
category, nor can you set an access category to default protection.

E $ I A C L (1 5 0) O p e r a t i o n i l l e g a l o n a c c e s s c a t e g o r y.
An attempt was made to open, close, delete, or set improper attributes on an access category.
Use ACSLST to read an access category. Use CATSDL to delete an access category. The only
proper attributes to set on an access category are date/time attributes such as date/time last
modified.

E $ N C A T (1 5 1) N o t a n a c c e s s c a t e g o r y .
The file system object is not an access category. The ACSCAT, CATSDL, and DIRSCR
subroutines are all capable of returning this error code.

E $ L R N A (1 5 2) L i k e r e f e r e n c e n o t a c c e s s i b l e .
ACSLIK cannot access the like reference object due to insufficient access.

E $ C P M F (1 5 3) C a t e g o r y p r o t e c t s M F D .
An attempt was made to call CATSDL to delete an access category that protects the MFD of
a partition.

E $ A C B G (1 5 4) A C L t o o b i g .
An attempt was made to specify more access control information than can fit in a directory
entry. See Volume II of this series for a description of the limits on access control lists.

T h i r d E d i t i o n A - 1 9

Advanced Programmer's Guide, Volume 0

E $ A C N F (1 5 5) A c c e s s c a t e g o r y n o t f o u n d .
The access category referenced in a call to ACSCAT or DIRSCR could not be found. A
common cause for this error is the lack of the .ACAT suffix in the call. None of the
PRIMOS access control subroutines add this suffix to a filename. Therefore, your program
should call APSFXS to ensure addition of the suffix.

E $ L R N F (1 5 6) L i k e r e f e r e n c e n o t f o u n d .
The ACSLIK subroutine could not find the like reference. See Volume II of this series for
details on setting access on one object to be like that of another object. A common cause for
this error is the false assumption that supplying a simple pathname causes the like reference
to be searched for in the target object's directory. In fact, it is searched for in the user's home
directory.

E $ B A C L (1 5 7) B a d a c c e s s c o n t r o l l i s t f o r m a t .
An invalid access control list was supplied to the ACSSET or ACSCHG subroutine. See
Volume II of this series for detailed information on the syntax for access control lists.

E $ B V E R (1 5 8) B a d v e r s i o n n u m b e r .
A version number supplied by the calling program in a structure or in the calling sequence is
unrecognized or no longer supported. If this error occurs in an EPF file, it may be correctable
by resubmitting the file to BIND.

E $ N I N F (1 5 9) N o i n f o r m a t i o n i s a c c e s s i b l e .
An error occurred while you were attempting to access a file system object in a directory to
which you have no List access. To prevent the determination of objectnames in the directory
by inference or by the process of elimination, PRIMOS does not report the original error to
the calling program or to the user. ESNINF is also returned by the LNSSET and DSSAVL
subroutines.

E $ C A T F (1 6 0) A c c e s s c a t e g o r y f o u n d i n d i r e c t o r y .
The ACSRVT subroutine cannot revert a directory (that is, change it from an ACL directory
to a password directory), because the directory still contains access categories.

E $ A D R F (1 6 1) A C L s u b d i r e c t o r y f o u n d i n d i r e c t o r y .
ACSRVT returns this error code to indicate that the directory to be reverted (changed from an
ACL directory to a password directory) still contains ACL subdirectories that must themselves
be reverted before their parent directory can be reverted.

E $ N V A L (1 6 2) V a l i d a t i o n e r r o r .
CHGSPW returns this error code if the user's entry could not be found in the EDIT_PROFILE
database (perhaps indicating that the user's entry was deleted since the user logged in).

A - 2 0 T h i r d E d i t i o n

PRIMOS Error Codes

E $ L O G O (1 6 3) (n o m e s s a g e)
PRIMOS uses this error code for internal communication when calling the subroutine that
reinitializes a user's command environment to indicate that the user is logging out Neither the
error code nor the accompanying null message is ever returned to a user program or displayed
on a user's terminal.

E $ N U T P (1 6 4) N o u n i t t a b l e a v a i l a b l e f o r p h a n t o m .
All unit tables are takea

E $ U T A R (1 6 5) U n i t t a b l e a l r e a d y r e t u r n e d .
An internal PRIMOS error occurred when logging out a user.

E $ U N I U (1 6 6) U n i t t a b l e n o t i n u s e .
A unit table that was not being used is being returned to the system.

E $ N F U T (1 6 7) N o u n i t t a b l e a v a i l a b l e .
No unit tables are available.

E $ U A H U (1 6 8) U s e r a l r e a d y h a s u n i t t a b l e .
An internal PRIMOS error occurred when logging in a user.

E $ P A N F (1 6 9) P r i o r i t y A C L n o t f o u n d .
PASLST returns this error code to indicate that no priority ACL was placed on the disk
partition specified.

E $ M I S A (1 7 0) C o m m a n d l i n e a r g u m e n t m i s s i n g .
A required argument was not specified on the command line. User-written programs may use
this error code for similar purposes.

E $ S C C M (1 7 1) S y s t e m c o n s o l e c o m m a n d o n l y .
The desired operation can be performed only by a program running at the supervisor terminal
(User 1).

E$BRPA (172)
Not currently returned by PRIMOS.

E $ D T N S (1 7 3) D a t e a n d t i m e n o t s e t .
DIRSCR and QSSET subroutines return this error code to indicate that proper disk-quota
operations cannot be performed unless the system date and time are set.

T h i r d E d i t i o n A - 2 1

Advanced Programmer's Guide, Volume 0

E $ S P N D (1 7 4) R e m o t e p r o c e d u r e c a l l s t i l l p e n d i n g .
A call to a remote system has not completed within a reasonable amount of time. This error
code indicates a non-recoverable network error.

E $ B C F G (1 7 5) N e t w o r k c o n f i g u r a t i o n m i s m a t c h .
The remote system on which the file system object resides does not agree with the network
configuration of the local system or the remote system requires a remote ID. Use the ARID
command to establish a remote ID. If the problem persists, contact your Network
Administrator for assistance.

E $ B M O D (1 7 6) B a d a c c e s s m o d e .
The ACS subroutines return this error code if the access mode is not ALL, NONE, or one or
more of the letters A, D, L, O, P, R, U, W, or X. See Volume II of this series and the
PRIMOS User's Guide for detailed information on the syntax rules for access control lists.

E $ B I D (1 7 7) B a d u s e r i d e n t i f i e r .
ACSSET, VALIDS, or CHGSSA return this error code to indicate an invalid identifier or user
name. ACSSET may also return this error code if two specifications of SREST occur in the
access control list See Volume n of this series and the PRIMOS User's Guide for detailed
information on the syntax of an access control list

E $ S T 1 9 (1 7 8) O p e r a t i o n i l l e g a l o n p r e - 1 9 d i s k .
An attempt was made to use file system features that are not available for files on the
specified disk. This is usually because the disk was formatted using an earlier revision of
PRIMOS that did not support these features.

E $ C T P R (1 7 9) O b j e c t i s c a t e g o r y - p r o t e c t e d .
ACSCHG returns this error code when an attempt is made to change the access of an object
that is protected by an access category. See Volume II of this series for information on how
your program can handle this situation. See the PRIMOS User's Guide for detailed
information on the rules governing access control lists.

E $ D F P R (1 8 0) O b j e c t i s d e f a u l t - p r o t e c t e d .
ACSCHG returns this error code when an attempt is made to change the access of an object
that is default-protected.
If you wish your program to force the change anyway, have it call ACSLIK with the target
object as both the target and reference objects; that is, set a specific ACL to match the
existing ACL. Then, call ACSCHG to change the specific ACL on the target object

E $ D L P R (1 8 1) F i l e i s d e l e t e - p r o t e c t e d .
FTLSDL or SRCHSS return this error code when an attempt is made to delete a file that was
delete-protected by SATRSS (via the SET_DELETE command).

A - 2 2 T h W d E d i t i o n

PRIMOS Error Codes

E$BLUE (182)
Not currently returned by PRIMOS.

E$NDFD (183)
Not currently returned by PRIMOS.

E $ W F T (1 8 4) W r o n g fi l e t y p e .
The file specified is of the wrong type. For example, this error code is returned by CFSEXT,
CFSREM, or CFSSME if you specify a file that is not a CAM file.

E $ F D M M (1 8 5) F o r m a t / d a t a m i s m a t c h .
This error code is returned by the LISTSCMD subroutine if you specify an invalid wildcard
string.

E $ F E R (1 8 6) B a d f o r m a t .
This error code is returned by the ISNSL, ISNSRC, and ISNSUC subroutines if the file
accessed is not formatted as a High Level Name File (HLNF).

E$BDV (187)
Not currently returned by PRIMOS.

E$BFOV (188)
Not currently returned by PRIMOS.

E$NFAS (189) Top- leve l d i rec to ry no t found or inaccess ib le .
The first directory name supplied in the pathname could not be located on any of the disks
that are active and visible to the calling system. This error can also occur if the named
directory does actually exist on one or more disks, but the user does not have List access to
any of them.

E $ A P N D (1 9 0) A s y n c h r o n o u s p r o c e d u r e s t i l l p e n d i n g .
An attempt to initiate a new asynchronous remote procedure failed because there is a previous
asynchronous procedure call to that remote node. Terminate the previous asynchronous
procedure call and retry the operation.

E $ B V C C (1 9 1) B a d v i r t u a l c i r c u i t c l e a r i n g .
An error was made in clearing a virtual circuit when the user was terminating file access to a
remote node. It does not indicate an error in the user program; it most likely indicates that a
network problem occurred prior to the termination of the connectioa

T h i r d E d i t i o n A - 2 3

Advanced Programmer's Guide, Volume 0

E $ R E S F (1 9 2) R e s t r i c t e d a c c e s s fi l e .
An attempt was made to access a file that is restricted to access by only a particular
subsystem (such as ROAM).

E $ M N P X (1 9 3) I l l e g a l m u l t i p l e h o p s i n N P X .
A disk partition residing on a remote node is listed on that remote node as residing on yet
another remote node, requiring a second remote access, which is not allowed. Ask your
System Administrator to modify the system startup file appropriately.

E$SYNT (194)
Not currently returned by PRIMOS.

E $ U S T R (1 9 5) U n t e r m i n a t e d s t r i n g .
PRIMOS uses this error code internally. It is not currently returned to the user.

E$WNS (196)
Not currently returned by PRIMOS.

E$IREQ (197)
Not currently returned by PRIMOS.

E$VNG (198)
Not currently returned by PRIMOS.

E$SOR (199)
Not currently returned by PRIMOS.

E$TMW (200)
Not currently returned by PRIMOS.

E$ESV (201)
Not currently returned by PRIMOS.

E$VABS (202)
Not currently returned by PRIMOS.

A _ 2 4 T h i r d E d i t i o n i

PRIMOS Error Codes

r

E $ B C L C (2 0 3) B a d c o m p i l e r l i b r a r y c a l l .
The compiler generated an invalid call to one of its runtime library routines. For example, the
first argument to most of the I/O routines is a key that indicates which optional arguments
have or have not been specified. If the compiler sets the key to indicate that a particular
argument will be passed, but the compiler does not pass that argument, the error ESBCLC is
raised. Contact your System Administrator for assistance.

E $ N S B (2 0 4) B R M S - l a b e l e d t a p e w a s d e t e c t e d .
A non-BRMS product has tried to read a BRMS-labeled tape.

E $ W S L V (2 0 5) S l a v e I D m i s m a t c h .
One of the nodes involved in your network connection has had the network restarted since
you last used this remote file access connection. Attach to a directory on a different system,
then reestablish attach points and retry the RFA operation.

E $ V C G C (2 0 6) V i r t u a l c i r c u i t w a s c l e a r e d .
The virtual circuit used for RFA access to a particular node was cleared by PRIMENET.
Close all units open to that node and issue the ORIGIN command to reset the condition, then
reestablish attach points and open files on the remote node as desired.

E $ M S L V (2 0 7) M a x i m u m s l a v e s p e r u s e r e x c e e d e d .
The maximum number of remote file accesses to remote systems per user has been reached
and no new RFAs to other remote systems are allowed.

E $ I D N F (2 0 8) S l a v e I D n u m b e r n o t f o u n d .
Internal RFA error.

E $ N A C C (2 0 9) N o t a c c e s s i b l e .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ U D M A (2 1 0) N o t e n o u g h D M A c h a n n e l s .
There are too few DMA channels during a low-level operation on a peripheral device.

E $ U D M C (2 1 1) N o t e n o u g h D M C c h a n n e l s .
There are too few DMC channels during a low-level operation on a peripheral device.

E$BLEF (212)
Not currently returned by PRIMOS.

E $ B L E T (2 1 3) B a d t a p e r e c o r d l e n g t h a n d E O T .
PRIMOS uses this error code internally. It is not currently returned to the user.

T h i r d E d i t i o n A - 2 5

Advanced Programmer's Guide, Volume 0

E $ A L S Z (2 1 4) A l l o c a t i o n r e q u e s t t o o s m a l l .
A call to STRSAL to allocate memory specified too few halfwords to allocate. You must
allocate a minimum of four halfwords.

E $ F R E R (2 1 5) F r e e r e q u e s t w i t h i n v a l i d p o i n t e r .
A call to STRSFR or STRSFS was made with an invalid pointer. An invalid pointer is a
pointer to an area of memory already freed, or to a location other than the beginning of an
allocated or freed area.

E $ H P E R (2 1 6) U s e r s t o r a g e h e a p i s c o r r u p t e d .
The heap storage for program-class storage was corrupted. Issue the ICE command to reset
the condition.
Alternatively, if you believe the program you were running caused the problem, issue the
DUMP_STACK command to trace the program's history; then issue the ICE command to
reinitialize your command environment. (Errant user programs can corrupt program-class and
process-class storage.)

E $ E P F T (2 1 7) E P F t y p e i n v a l i d .
The EPF type is not valid for this revision of PRIMOS. The EPFSMAP subroutine is
typically the subroutine that returns this error code, although other EPF-related subroutines
also may return this error code. Resubmit the file to BIND. See Volume III of this series for
more information.

E$EPFS (218)
Not currently returned by PRIMOS.

E $ I L T D (2 1 9) E P F L T D l i n k a g e d e s c r i p t o r i n v a l i d .
An invalid LTD linkage descriptor type was found in an EPF file. The EPF file is corrupted
or an internal error occurred in BIND. Resubmit the file to BIND.

E $ I L T E (2 2 0) E P F L T E l i n k a g e d e s c r i p t o r i n v a l i d .
An invalid LTE linkage descriptor type was found in an EPF file. The EPF file is corrupted
or an internal error occurred in BIND. Resubmit the file to BIND.

E $ E C E B (2 2 1) C o m m a n d e n v i r o n m e n t b r e a d t h e x c e e d e d .
An attempt was made to invoke CPS, EPFSRUN, or EPFSINVK when the maximum
command environment breadth (as displayed by LIST_LIMITS) was already reached by the
running program. Use the RDSCE_DP subroutine to determine the current command
environment breadth and use the CESBRD subroutine to determine the maximum command
environment breadth within your program.

A - 2 6 T h i r d E d i t i o n

PRIMOS Error Codes

E $ E P F L (2 2 2) E P F fi l e e x c e e d s fi l e s i z e l i m i t .
The EPF is too large for the EPFSMAP or EPFSRUN subroutine to handle. Consider
breaking up the program or library into separate program and library EPFs, if possible.

E $ N T A (2 2 3) E P F fi l e n o t a c t i v e f o r t h i s u s e r .
REMEPFS and internal PRIMOS subroutines use this error code to indicate that an attempt
was made to remove from memory an EPF that was not mapped to memory for this user.

E$SWPS (224)
Not currently returned by PRIMOS.

E$SWPR (225) EPF file suspended within this process .
The EPF being removed (by EPFSDEL, EPFSRUN, or REMEPFS) is suspended Cactive)
within the user's process. Removal of the EPF from memory is not allowed in this case.

E $ A D C M (2 2 6) S y s t e m A d m i n i s t r a t o r c o m m a n d o n l y .
A user other than the System Administrator attempted to set system defaults for command
environment limits.

E $ U A F U (2 2 7) U n a b l e t o a l l o c a t e fi l e - u n i t .
PRIMOS was unable to allocate a file-unit entry for a user because insufficient system-class
storage was available.

E $ F I D C (2 2 8) F i l e i n c o n s i s t e n t d a t a c o u n t .
Either a corrupted disk or a problem with the file system exists. This error is returned during
the truncation of a SAM file if the data count for the last record of the file implies that the
current position of the unit in the file is beyond the end-of-file mark. Contact your System
Administrator or system operations staff to determine whether the situation can be corrected.

E $ I N D L (2 2 9) I n s u f fi c i e n t D A M fi l e i n d e x l e v e l s .
A DAM file has an insufficient number of index record levels for its size. This error may be
returned during the truncation of a DAM file by PRWFSS or during the deletion of a DAM
file. Contact your System Administrator or system operations staff to determine whether the
situation can be corrected.

E $ P E O F (2 3 0) P a s t e n d o f fi l e .
Either a corrupted disk or a problem with the file system exists. This error is returned during
the truncation of a DAM file if the data count for the last record of the file implies that the
current position of the unit in the file is beyond the end-of-file mark. Contact your System
Administrator or system operations staff to determine whether the situation can be corrected.

T h i r d E d i t i o n A - 2 7

Advanced Programmer's Guide, Volume 0

E $ E X M F (2 3 1) E x t e n t m a p f u l l .
The extent map of a Contiguous Access Method CCAM) file is full. The file cannot be
extended because no additional extents can be added to the extent map.

E $ B K I O (2 3 2) U n i t o p e n f o r b l o c k m o d e I / O .
The file-unit is open for block mode I/O. Operations requiring locate mode cannot be
performed.

E $ A W E R (2 3 3) A s y n c h r o n o u s w r i t e e r r o r .
An error occurred during an asynchronous writing action.

E $ R A M C (2 3 4) R O A M a c c e s s m o d e c o n f l i c t .
A ROAM error, not a file system error, exists.

E $ R I E R (2 3 5) R O A M i n t e r n a l e r r o r .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ N S L V (2 3 6) P r o c e s s n o t a s l a v e .
PRIMOS uses this error code internally. It is not currently returned to the user.

E$RSIN (237)
Not currently returned by PRIMOS.

E $ A T N S (2 3 8) A t t r i b u t e n o t s u p p o r t e d i n d i r e c t o r y .
The target object does not have the date/time created (UTC) and date/time last accessed
(DTA) attribute fields. These attribute fields are not present because the object is not an entry
in a hashed directory. Attempts to set these attribute fields return this error code.

E $ R S H D (2 3 9) R e m o t e d i s k h a s b e e n s h u t d o w n .
A file system operation cannot be performed because it would take place on a remote disk
that was shut down from the supervisor terminal on the local system. No further accesses to
the disk are permitted from the local system. Accesses to the disk from other nodes on the
network, including the system on which the disk resides, may still be permitted.

E $ N O P D (2 4 0) N o p a g i n g d e v i c e d e fi n e d .
PRIMOS uses this error code internally. It is not currently returned to the user.

E$NRFC (241)
Not currently returned by PRIMOS.

A - 2 8 T h \ r 6 E d i t i o n

PRIMOS Error Codes

E $ C P O V (2 4 2) O v e r fl o w o f C P U s e c o n d s .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ I O O V (2 4 3) O v e r fl o w o f I / O s e c o n d s .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ B H O V (2 4 4) O v e r fl o w o f C P U a n d I / O s e c o n d s .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ A E L E (2 4 5) L i b r a r y i s n o n - e x e c u t a b l e .
You tried to invoke a library EPF as a program EPF. If you want an EPF to function as both
a program and a library EPF, you must use the MAIN subcommand of BIND to tell BIND
what to use as a starting address.

E $ L I S T (2 4 6) S e a r c h l i s t n o t f o u n d o r i n v a l i d .
A search rule subroutine specified the name of a search list that is not currently set for the
user's process. This error code is also returned if you attempt to create a search list with an
illegal search list name. Use the LIST_SEARCH_RULES command to determine which
search lists are set for your process. Search list names are not case sensitive.

E $ R U L E (2 4 7) S e a r c h r u l e n o t f o u n d o r i n v a l i d .
A search rule subroutine specified a search rule that PRIMOS cannot find in the specified
search list. Sometimes this error code is issued because the search rule in the list and the one
specified in your subroutine differ in case. Use the LIST_SEARCH_RULES command to list
the rules in your search lists.

E $ N T O P (2 4 8) S e a r c h r u l e n o t a n o p t i o n a l r u l e .
You attempted to enable or disable a search rule that is not an optional search rule. You can
use the SRSREAD subroutine to determine if a search rule is optional.

E $ N E S T (2 4 9) S e a r c h l i s t s n e s t e d t o o d e e p l y .
You attempted to set a search list using a search rules file (template file) that contains -insert
keywords that result in either of the following conditions. Either these -insert keywords
would result in the nested insertion of template files in excess of 100 levels, or the -insert
keywords would result in a circular reference, such as two files that attempt to include each
other.

E $ A D M N (2 5 0) A d m i n i s t r a t o r r u l e s n o t m o d i fi a b l e .
You attempted to delete or modify an administrator rule in a search list or you attempted to
insert a search rule before an administrator rule.

T h i r d E d i t i o n A 2 9

Advanced Programmer's Guide, Volume 0

E $ E O L (2 5 1) E n d o f s e a r c h l i s t .
You attempted to read past the end of a search list

E $ A D R L (2 5 2) A d m i n i s t r a t o r r u l e s c o n t a i n e r r o r .
You attempted to create an illegal administrator rule.

E $ I F C B (2 5 3) I n s u f fi c i e n t f r e e c o n t i g u o u s b l o c k s .
Not enough contiguous disk blocks are available to extend the CAM file. (When CAM files
are extended, they are extended more than one record at a time.)

E $ I M E M (2 5 4) I n s u f fi c i e n t m e m o r y f o r e x t e n t m a p .
The user does not have enough dynamic memory to read in the CAM file's extent map. The
extent map, which contains the physical location of the extents on the disk, is read into
memory when it is opened.

E $ N R E S (2 5 5) N o r e s o u r c e s a v a i l a b l e f o r r e q u e s t .
A system process was not available for use or not enough memory was available to carry out
the request.

E $ I L U S (2 5 6) I l l e g a l u s e o f P R I M I X g a t e .
The user called a gate reserved for PRIMIX. This error may be returned when the user is not
currently in PRIMIX or when that user's PRIMIX state data was corrupted.

E $ N C H D (2 5 7) N o c h i l d f o u n d f o r t h i s p r o c e s s .
A process attempted to wait for the termination of a child when the process has no children.
The PXSWAITP subroutine returns this error code.

E $ I N T (2 5 8) P R I M I X w a i t t e r m i n a t e d b y i n t e r r u p t .
A process was taken off a PRIMIX wait by an interrupt This error code is returned by
PXSWAITP and PXSPAUSP.

E$XSHD (259) PRIMIX can not be initialized when running.
The user attempted to start PRIMIX when PRIMIX is already active. This error code is
returned by PXSINIT, called through the START_PRIMIX command.

E$NOPX (260) PRIMIX can not be shut down when not running.
The user attempted to stop PRIMIX when PRIMIX is not currently active. This error code is
returned by PXSSHDN, called through the STOP_PRIMIX command.

A - 3 0 T h i r d E d i t i o n

PRIMOS Error Codes

E $ N O U S (2 6 1) P R I M I X p r o c e s s t a b l e h a s n o u s e r s .
The PRIMIX process table is empty when at least one entry for the caller should have been
found. This error code indicates a serious problem with the PRIMIX process data structure.

E$INCO (262) PRIMIX process table returned is incomplete.
PXSDUMP (the subroutine that returns the PRIMIX process table to the caller) ran out of
dynamic memory so that only a partial listing of the table was returned.

E $ I R E Q (2 6 3) I l l e g a l E P F r e g i s t r a t i o n .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E$INAI (264) Inva l id number o f in i t ia l i za t ion arguments .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ I L L N (2 6 5) I l l e g a l l i n k a t E P F r e g i s t r a t i o n .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ B U I D (2 6 6) B a d u s e r I D .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ I N R E (2 6 7) I n v a l i d r e q u e s t .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ N P S G (2 6 8) N o t e n o u g h p e r - u s e r D TA R 1 s e g m e n t s .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ U I N F (2 6 9) U s e r I D n o t f o u n d .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ I V P T (2 7 0) I n v a l i d b l o c k p o i n t e r .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ S N A L (2 7 1) S e g m e n t n o t a l l o c a t e d .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ N A T F (2 7 2) N o t a b l e t o f r e e s t o r a g e .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ N D 3 S (2 7 3) N o D T A R 3 s e g m e n t s a v a i l a b l e .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

T h i r d E d i t i o n A - 3 1

Advanced Programmer's Guide, Volume 0

E $ B S M T (2 7 4) N u l l s m t _ p t r o r b a d fi e l d w i t h i n S M T.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ I A L N (2 7 5) I l l e g a l a l i a s n a m e .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ B P T R (2 7 6) B a d p o i n t e r w i t h i n S M T .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ I D B T (2 7 7) I l l e g a l d a t a b a s e .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ B D T R (2 7 8) B a d D T A R .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ L U N R (2 7 9) L i b r a r y u n r e g i s t e r e d .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ E N R G (2 8 0) E P F h a s n o t b e e n r e g i s t e r e d .
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E $ N D R B (2 8 1) N o d i r e c t o r y b l o c k f o r u n i t .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ C Q P T (2 8 2) C i r c u l a r q u o t a p a r e n t t h r e a d .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ A R E A (2 8 3) C o r r u p t e d a r e a e n c o u n t e r e d .
A space allocation routine found an error in internal consistency.

E $ N O W N (2 8 4) N o t o w n e r o f r e s o u r c e .
You attempted to return space that you do not own.

E $ B L O K (2 8 5) B a d b l o c k e n c o u n t e r e d ,
A space allocation routine found an error in internal consistency.

A - 3 2 T h i r d E d i t i o n ^

PRIMOS Error Codes

E $ I S M R (2 8 6) I n v a l i d s t a t i c m o d e r e s u m e .
The command processor uses ESISMR to indicate that the module INVKSM was told to
restore a file that is not a valid static-mode program image. The CPS subroutine returns
ESISMR if a program called CPS exists to resume or restore an invalid image. ESISMR is
displayed as an error message when the user has attempted to restore or resume an invalid
image from command level.

E $ B L I N (2 8 7) B a d l i n e n u m b e r .
A line number out of the legal range is passed to the gate.

E $ B B U F (2 8 8) B a d b u f f e r n u m b e r .
A buffer number out of the legal range is passed to the gate.

E $ B P R O (2 8 9) B a d p r o t o c o l .
A protocol index out of the legal range is passed to the gate.

E $ L N U S (2 9 0) L i n e i n u s e .
A line type is being changed on a line that is already assigned to a user.

E $ B F U S (2 9 1) B u f f e r i n u s e .
The specified buffer number is already being used by another user.

E $ I R B F (2 9 2) I n v a l i d u s e o f r e m o t e b u f f e r .
A buffer number in the remote buffer range is specified for a local asynchronous line.

E $ I A B F (2 9 3) I n v a l i d u s e o f a s s i g n l i n e b u f f e r .
A buffer number in the assignable line buffer range is specified for a terminal user line.

E $ I A S D (2 9 4) I n v a l i d A S D u s e .
An attempt was made to enable ASD on an assignable line or an NTS line.

E $ I A S P (2 9 5) I n v a l i d s a m p l e s p e e d f o r A S D .
The passed line speed used as the ASD sample speed is invalid.

E $ I L O D (2 9 6) I n v a l i d u s e o f D I S L O G .
You tried to enable DISLOG on an assignable, remote, or NTS line.

E $ N S N I (2 9 7) N S S d a t a b a s e n o t i n i t i a l i z e d .
An attempt was made to access the Node Status database that was created.

T h i r d E d i t i o n A - 3 3

Advanced Programmer's Guide, Volume 0

E $ N S N C (2 9 8) N o d e / L A N n a m i n g c o n f l i c t .
An attempt to add a node to the Node Status database failed because of a naming conflict.
The node name conficts with an existing LAN name, host name, or LTS name in the
database.

E $ N S A C (2 9 9) N o d e / M A C a d d r e s s c o n f l i c t .
An attempt to add a node to the Node Status database failed because of a MAC address
conflict. The node has a MAC address that conflicts with an existing MAC address in the
database.

E $ N T H N (3 0 0) N T S h o s t n o t c o n fi g u r e d .
NTS was started for a host that was not configured for that NTS in the NTS configuration
file.

E $ N T N S (3 0 1) N T S n o t s t a r t e d .
NTS was not started and an operation requiring NTS was attempted.

E $ N T S T (3 0 2) N T S a l r e a d y s t a r t e d .
NTS was started and an operation requiring that NTS not be started was attempted.

E $ N T C F (3 0 3) N o t a n N T S c o n f i g u r a t i o n fi l e .
NTS was started with other than an NTS configuration file Cfor example, a PRIMENET or an
SNA configuration file). This error code is also returned when the NTS config subfile 0
cannot be opened, the NTS config file version number is not current, or the NTS config file
checksum is not accurate.

E $ N T L C (3 0 4) L H C n o t c o n fi g u r e d .
An LHC is either not present or was not configured with an LHC directive, but that LHC was
specified in the NTS configuration file or the PRIMENET configuration file.

E $ N T I N (3 0 5) N T S d a t a b a s e n o t i n i t i a l i z e d .
An operation that requires access to the NTS database was attempted, but the NTS database is
not initialized.

E $ N T D L (3 0 6) L H C n o t d o w n l i n e l o a d e d .
An attempt was made to start PRIMENET/LAN300 or NTS on an LHC that is either broken
or was not downline loaded.

E $ P L A A (3 0 7) N T S l i n e a l r e a d y a s s o c i a t e d .
An attempt was made to associate an NTS line that was already associated.

A _ 3 4 T h i r d E d i t i o n

PRIMOS Error Codes

E $ L L A A (3 0 8) L T S l i n e a l r e a d y a s s o c i a t e d .
An attempt was made to associate an LTS line that was already associated.

E $ N A S O (3 0 9) L i n e n o t a s s o c i a t e d .
An attempt was made to unassociate an NTS line in PRIMOS or an LTS line that is not
currently associated.

E $ N C F G (3 1 0) L i n e n o t c o n fi g u r e d .
An attempt was made to start NTS, but no NTS lines are configured.

E $ N X C B (3 1 1) X C B u n a v a i l a b l e f o r r e q u e s t .
An operation requires a buffer to be sent to an LHC, but no control blocks are available.

E $ D O Q F (3 1 2) D e v i c e o u t p u t q u e u e f u l l .
An operation requires a buffer to be sent to an LHC, but the output queue is full.

E $ L N O C (3 1 3) L i n e n o t c o n n e c t e d .
A request for a connection between an LTS line and PRIMOS has been rejected. This can
occur when another connection is pending, when a disconnection is pending, or when the line
is not connectable.

E $ R Q F (3 1 4) R e q u e s t q u e u e f u l l .
The internal request queue to the NTS_SERVER is full.

E $ C R E J (3 1 5) C o n n e c t i o n r e q u e s t r e j e c t e d .
An LTS line rejected a connect request from PRIMOS. This occurs when the line is already
connected.

E $ C T M O (3 1 6) C o n n e c t i o n r e q u e s t t i m e d o u t .
An LTS line did not respond to a connect request (assignment) from PRIMOS. This occurs
when the LTS is not present or is not currently operational.

E $ L H D N (3 1 7) L H C d o w n .
An operation that requires an LHC to not be in the "down" state was requested when the LHC
is down.

E $ L T D N (3 1 8) L T S d o w n .
An operation that requires an LTS to not be in the "down" state was requested when the LTS
is down.

T h i r d E d i t i o n A - 3 5

Advanced Programmer's Guide, Volume 0

E $ N T S H (3 1 9) N T S i s s h u t d o w n .
An operation was attempted during an NTS shutdown.

E $ Q F U L (3 2 0) Q u e u e i s f u l l .
The controller queue is full.

E $ Q E M P (3 2 1) Q u e u e i s e m p t y .
The controller queue is empty.

E $ N O Q (3 2 2) Q u e u e n o t f o u n d .
An operation was requested on a queue that does not exist This queue does not exist because
it was not created by IGSFIND.

E $ V A L (3 2 3) V a l i d a t i o n e r r o r .
This error code is returned when a process request is rejected. A request is rejected if your
process does not have the proper access rights, if your process does not own the connection,
or if the logical connection ID has been corrupted.

E $ C O M M (3 2 4) C o m m a n d i l l e g a l .
This error code is returned if you specify a command for a routine that cannot accept
commands. A command is a fifteen-bit standalone quantity. Some data transfer routines, such
as IGSENQ and IGSDEQ, accept either buffers or commands. Other routines, such as
IGSABUF and IGSRBUF, have arguments formatted to accept commands, but cannot take
commands. Specifying a command for these routines returns ESCOMM.

E $ A W I R (3 2 5) P a g e i s a l r e a d y w i r e d .
You tried to wire a page that is already wired.

E $ I W I R (3 2 6) P a g e i s n o t w i r e d .
You tried to unwire a page that is not wired.

E $ N P D A (3 2 7) N o p a s s w o r d d i r e c t o r i e s a l l o w e d .
Password directories are disabled on the system and you tried to either create a password
directory or revert an ACL directory to a password directory.

E $ N I N T (3 2 8) S p o o l e r s u b s y s t e m n o t i n i t i a l i z e d .
You tried to spool a file before the Spooler subsystem was initialized. The system operator
must initialize the Spooler, using the PROP -COLDSTART command, before users can
access the Spooler.

A - 3 6 T h i r d E d i t i o n

PRIMOS Error Codes

E $ R E I U (3 2 9) R e g i s t e r e d E P F i s i n u s e .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ N B A (3 3 0) N o b u f f e r s a v a i l a b l e .
No buffers are available to make a line a terminal line.

E $ L N O W (3 3 1) L i n e n o t o w n e d b y y o u .
You tried to change line characteristics for a line other than your terminal line or a line
assigned to you.

E $ L N P (3 3 2) L i n e n o t p r e s e n t o n s y s t e m .
ASSLIN returns this error code if you specify a line number that does not correspond to an
asynchronous line on the system.

E $ L N A (3 3 3) L o c k n o t a l l o c a t e d .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ L D E S (3 3 4) L o c k h a s b e e n d e s t r o y e d .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ L N Y (3 3 5) L o c k i s n o t y o u r s .
PRIMOS uses this error code internally. It is not currently returned to the user.

E $ R M L N (3 3 6) I l l e g a l o p e r a t i o n o n r e m o t e l i n e .
ASSLIN returns this error code if you try to get a line number for a remote line. ASSLIN
returns line numbers of local NTS lines only.

E $ I T L B (3 3 7) I n v a l i d u s e o f t e r m i n a l l i n e b u f f e r .
ASSSET returns this error code if you try to set the user number for an assignable
asynchronous line.

E $ I P S (3 3 8) I n v a l i d p a r a m e t e r s e t t i n g .
ASSSET returns this error code if you specify an invalid value for one of the asynchronous
line characteristics.

E $ D P A R (3 3 9) D u p l i c a t e p a r a m e t e r .
ASSSET returns this error code if you specify duplicate values for an asynchronous line
characteristic in the list of line characteristics.

T h i r d E d i t i o n A - 3 7

Advanced Programmer's Guide, Volume 0

E $ P N S (3 4 0) P a r a m e t e r n o t s e t t a b l e .
ASSSET returns this error code if you specify a nonexistent asynchronous line characteristic,
or a characteristic that you are not permitted to modify.

E$BCHK (341)
Not currently returned by PRIMOS.

E$EXPD (342)
Not currently returned by PRIMOS.

E $ D N T S (3 4 3) D e n s i t y n o t s e l e c t e d .
Your attempt to specify a tape density when assigning a magnetic tape drive was rejected.
This can occur if the specified tape is not fully rewound.

E $ S N T S (3 4 4) S p e e d n o t s e l e c t e d .
Your attempt to specify a tape speed when assigning a magnetic tape drive was rejected. This
can occur if the specified tape is not fully rewound.

E $ B M P C (3 4 5) M a g t a p e c o n t r o l l e r h u n g .
A magnetic tape drive did not respond to an I/O request within a reasonable amount of time.
This can occur if the power switch on the interface box between a 6250 tape drive and its
tape controller is off, or if there is a problem with the tape drive hardware.

E $ G P O N (3 4 6) P a s s w o r d g e n e r a t i o n o n .
CHGSPW returns this error code if you attempt to manually set a user password when
automatic generation of all login validation passwords is enabled. Either disable automatic
password generation or use the GENSPW subroutine to create a computer-generated
password. The System Administrator can use the EDIT_PROFILE command to disable
automatic password generation

E $ N G P W (3 4 7) P a s s w o r d g e n e r a t i o n o f f .
GENSPW returns this error code if you attempt to create a computer-generated password
when automatic password generation is not enabled. Either enable automatic password
generation, or use the CHGSPW subroutine to manually change the password. The System
Administrator can use the EDITJPROFILE command to enable automatic password
generation.

E $ I S T A (3 4 8) I n v a l i d s t a t e .
PRIMOS uses this error code internally. It is not currently returned to the user.

A - 3 8 T h i r d E d i t i o n

PRIMOS Error Codes

E $ Z E R O (3 4 9) U n i n i t i a l i z e d b l o c k o n r o b u s t p a r t i t i o n .
An unintialized block was detected in a file on a robust partition. This usually happens
following a system halt that was recovered from by running FIX_DISK with the -FAST
option. The operation that returned this error code also reinitialized (zeroed out) the bad
block. Perform recovery procedures (if necessary) and rerun the program. To prevent multiple
ESZERO errors, you can run FIX.DISK with the -FULL option. This reinitializes all bad
blocks on the robust partition.

T h i r d E d i t i o n A - 3 9

Alphabetical List of Error Messages

In the course of debugging and running application programs, you will undoubtedly encounter
errors. These are reported on your terminal in the form of one or more lines of text, the first of
which is a standard PRIMOS error message. The error message may be followed by additional
program-specific information.
The purpose of this appendix is to make it easier, when all you have is the text of the error
message, to find the corresponding error message description in Appendix A. The message
descriptions in Appendix A are ordered numerically.
In the list that follows, messages are listed alphabetically by the text of the displayed error
message. Following each error message is the numeric value for each error code in the form
nnn, and the mnemonic for each error code in the form ESxrrjt.

Error Message Numeric
Value

Mnemonic

(Null message)
(Null message for logout)
Access category found in directory.
Access category not found.
ACL subdirectory found in directory.
ACL too big.
Administrator rules contain error.
Administrator rules not modifiable.
Allocation request too small.
Already exists.
Asynchronous procedure still pending.
Asynchronous write error.
Attribute not supported in directory.
Bad access control list format.
Bad access mode.
Bad argument in command.
Bad block encountered.
Bad buffer number.
Bad command format.
Bad compiler library call.
Bad DAM file.

37 ESNULL
163 ESLOGO
160 ESCATF
155 ESACNF
161 ESADRF
154 ESACBG
252 ESADRL
250 ESADMN
214 ESALSZ

18 ESEXST
190 ESAPND
233 ESAWER
238 ESATNS
157 ESBACL
176 ESBMOD
71 ESBARG

285 ESBLOK
288 ESBBUF
68 ESCMND

203 ESBCLC
22 ESBDAM

Third Edition B-1

Advanced Programmer's Guide, Volume 0

Error Message Numeric
Value

Mnemonic

Bad device number.
Bad device number copied.
Bad DTAR.
Bad format.
Bad key.
Bad key for this protocol.
Bad length.
Bad line number.
Bad number of words.
Bad output data.
Bad parameter.
Bad password.
Bad pointer within SMT.
Bad protocol.
Bad protocol handler specified.
Bad segment directory unit.
Bad segment number.
Bad stack format
Bad stack format signalling.
Bad tape record length and EOT.
Bad truncate of segment directory.
Bad unit number.
Bad user ID.
Bad user identifier.
Bad version number.
Bad virtual circuit clearing.
Beginning of file.
BRMS-labeled tape was detected.
Buffer in use.
Buffer is too small.
Category protects MFD.
Circular quota parent thread.
Command environment breadth exceeded.
Command illegal.
Command line argument missing.
Command line truncated.
Concealed stack overflow.
Connection request rejected.
Connection request timed out.
Corrupted area encountered.
Corruption detected during use of EXIT.
Crawlout unwind failed.
Date and time not set.
Density not selected.

B-2

80 ESBDEV
88 ESSBCF

278 ESBDTR
186 ESFER
28 ESBKEY

127 ESBKFP
79 ESBLEN

287 ESBLIN
101 ESBNWD
78 ESBDAT
6 ESBPAR

24 ESBPAS
276 ESBPTR
289 ESBPRO
128 ESBPRH
30 ESBSUN
45 ESBSGN
62 E$STKF
63 ESSTKS

213 ESBLET
26 ESBTRN
29 ESBUNT

266 ESBUID
177 ESBID
158 ESBVER
191 ESBVCC

2 ESBOF
204 ESNSB
291 ESBFUS
35 ESBFTS

153 ESCPMF
282 ESCQPT
221 ESECEB
324 ESCOMM
170 ESMISA
74 ESTRCL
72 ESCSOV

315 ESCREJ
316 ESCTMO
283 ESAREA
70 ESNEXP
67 ESCRUN

173 ESDTNS
343 ESDNTS

Third Edition

Alphabetical List of Error Messages

Error Message Numeric
Value

Mnemonic

Device already attached.
Device forcibly detached.
Device in use.
Device not assigned.
Device not available.
Device not connected.
Device not started.
Device output queue full.
Directory is damaged.
Directory entry list is full.
Directory is not empty.
Disk has been shut down.
Disk I/O error.
Disk is full.
Disk is write-protected.
DPTX already configured.
DPTX not configured.
Duplicate parameter.
ESINWT enabled by configuration.
End of file.
End of search list.
Enqueued only.
EPF file exceeds file size limit
EPF file not active for this user.
EPF file suspended within this process.
EPF has not been registered.
EPF LTD linkage descriptor invalid.
EPF LTE linkage descriptor invalid.
EPF type invalid.
Extent map full.
FAM — invalid function code.
FAM — operation not complete.
Fatal error in crawlout
Field prohibited.
Field required.
File in use.
File inconsistent data count.
File is delete-protected.
File is too big.
File open on delete.
Hie units all in use.
Format/data mismatch.
Free request with invalid pointer.
Illegal 3270 command.

77 ESDATT
85 ESDFD
39 ESDVIU
48 ESNASS
76 ESDNAV

100 ESDNCT
42 ESDNS

312 ESDOQF
34 ESBUFD
8 ESFDFL

19 ESDNTE
121 ESSHDN
21 ESDISK
9 ESDKFL

56 ESWTPR
132 ESDANC
86 ESDNC

339 ESDRAR
126 ESIWST

1 ESEOF
251 ESEOL
124 ESENQD
222 ESEPFL
223 ESNTA
225 ESSWPR
280 ESENRG
219 ESILTD
220 ESILTE
217 ESEPFT
231 ESEXMF
46 ESFIFC
53 ESFONC
65 ESCRWL
94 ESVFP
93 ESVFR
5 ESFIUS

228 ESFIDC
181 ESDLPR
36 ESFTTB
11 ESFDEL
41 ESFUIU

185 ESFDMM
215 ESFRER
87 ESSICM

Third Edition B-3

Advanced Programmer's Guide, Volume 0

Error Message Numeric
Value

Mnemonic

Illegal alias name.
Illegal database.
Illegal DPTX file format
Illegal EPF registration.
Illegal link at EPF registration.
Illegal multiple hops in NPX.
Illegal name.
Illegal operation on remote line.
Illegal remote reference.
Illegal treename.
Illegal use of PRIMIX gate.
Input waiting.
Insufficient access rights.
Insufficient DAM file index levels.
Insufficient free contiguous blocks.
Insufficient memory for extent map.
Invalid AID byte.
Invalid ASD use.
Invalid block pointer.
Invalid cursor address.
Invalid field address.
Invalid number of initialization arguments.
Invalid parameter setting.
Invalid request
Invalid sample speed for ASD.
Invalid state.
Invalid static mode resume.
Invalid use of assign line buffer.
Invalid use of DISLOG.
Invalid use of remote buffer.
Invalid use of terminal line buffer.
Invalid VMFA window number.
I/O abort in progress.
I/O error or device interrupt.
LHC down.
LHC not configured.
LHC not downline loaded.
Library is non-executable.
Library unregistered.
Like reference not accessible.
Like reference not found.
Line in use.
Line not associated.
Line not configured.

B-4

275 ESIALN
277 ESIDBT
130 ESILFF
263 ESIREG
265 ESBLLN
193 ESMNPX
17 ESBNAM

336 ESRMLN
38 ESIREM
57 ESITRE

256 ESILUS
83 ESINWT
10 ESNRIT

229 ESINDL
253 ESEFCB
254 ESIMEM
90 ESVIA

294 ESIASD
270 ESIVPT
91 ESVICA
92 ESVIF

264 ESINAI
338 ESIPS
267 ESINRE
295 ESIASP
348 ESISTA
286 ESISMR
293 ESIABF
296 ESILOD
292 ESIRBF
337 ESITLB
105 ESIVWN
129 ESABTI
137 ESIEDI
317 ESLHDN
304 ESNTLC
306 ESNTDL
245 ESAELE
279 ESLUNR
152 ESLRNA
156 ESLRNF
290 ESLNUS
309 ESNASO
310 ESNCFG

Third Edition

Alphabetical List of Error Messages

Error Message

Line not connected.
Line not owned by you.
Line not present on system.
Lock has been destroyed.
Lock is not yours.
Lock not allocated.
LTS down.
LTS line already associated.
Magtape command invalid.
Magtape controller hung.
Maximum quota exceeded.
Maximum slaves per user exceeded.
Message operation partially blocked.
Name is too long.
Network configuration mismatch.
Network error detected.
No buffer space.
No buffers available.
No child found for this process.
No data found.
No directory attached.
No directory block for unit
No DTAR3 segments available.
No fault frame.
No free quota blocks.
No unit table available.
No information is accessible.
No input available.
No more temporary segments.
No more VMFA segments.
No NPX slaves available.
No on-unit found.
No paging device defined.
No password directories allowed.
No phantoms available.
No resources available for request.
No room.
No SMLC DMC channels.
No timer.
No unit table available for phantom.
Node/LAN naming conflict
Node/MAC address conflict
Not a DAM file.
Not a directory.

Numeric
Value

Mnemonic

313 ESLNOC
331 ESLNOW
332 ESLNP
334 ESLDES
335 ESLNY
333 ESLNA
318 ESLTDN
308 ESLLAA
99 ESIVCM

345 ESBMPC
143 ESMXQB
207 ESMSLV
117 ESPRTL
32 ESNMLG

175 ESBCFG
120 ESNETE
82 ESNBUF

330 ESNBA
257 ESNCHD
123 ESNDAT

7 ESNATT
281 ESNDRB
273 ESND3S
61 ESNFLT

142 ESNFQB
167 ESNFUT
159 ESNINF
84 ESNINP

108 ESNMTS
107 ESNMVS
134 ESNSLA
64 ESNOON

240 ESNOPD
327 ESNPDA
54 ESNPHA

255 ESNRES
55 ESROOM
75 ESNDMC
51 ESNTIM

164 ESNUTP
298 ESNSNC
299 ESNSAC
109 ESNDAM
12 ESNTUD

Third Edition B-5

Advanced Programmer's Guide, Volume 0

Error Message Numeric
Value

Mnemonic

Not a file or directory.
Not a quota disk.
Not a segment directory.
Not able to free storage.
Not accessible.
Not an access category.
Not an ACL directory.
Not an NTS configuration file.
Not enough DMA channels.
Not enough DMC channels.
Not enough per-user DTAR1 segments.
Not enough segments.
Not found.
Not found in segment directory.
Not open for VMFA.
Not owner of resource.
NSS database not initialized.
NTS already started.
NTS database not initialized.
NTS host not configured.
NTS line already associated.
NTS not started.
NTS is shut down.
Null smt_ptr or bad field within SMT.
Null command line.
Object is category-protected.
Object is default-protected.
Old partition.
Operation completed successfully.
Operation illegal on access category.
Operation illegal on directory.
Operation illegal on MFD.
Operation illegal on pre-19 disk.
Operation unsuccessful.
Overflow of CPU and I/O seconds.
Overflow of CPU seconds.
Overflow of I/O seconds.
Page is already wired.
Page is not wired.
Parameter not settable.
Parent not an ACL directory.
Password generation off.
Password generation on.
Past end of field.

B-6

149 ESNTFD
144 ESNOQD
13 ESNTSD

272 ESNATF
209 ESNACC
151 ESNCAT
147 ESNACL
303 ESNTCF
210 ESUDMA
211 ESUDMC
268 ESNPSG
103 ESNESG
15 ESFNTF
16 ESFNTS

110 ESNOVA
284 ESNOWN
297 ESNSNI
302 ESNTST
305 ESNTIN
300 ESNTHN
307 ESPLAA
301 ESNTNS
319 ESNTSH
274 ESBSMT
60 ESNCOM

179 ESCTPR
180 ESDFPR
27 ESOLDP
0 ESOK

150 ESIACL
14 ESDIRE

146 ESIMFD
178 ESST19
118 ESNSUC
244 ESBHOV
242 ESCPOV
243 ESIOOV
325 ESAWIR
326 ESIWIR
340 ESPNS
148 ESPNAC
347 ESNGPW
346 ESGPON
97 ESVPEF

Third Edition

Alphabetical List of Error Messages

Error Message Numeric
Value

Mnemonic

Past end of file. 230 ESPEOF
PIO instruction did not skip. 139 ESDNSK
PRIMIX can not be initialized when running. 259 ESXSHD
PRIMIX can not be shut down when not ninning. 260 ESNOPX
PRIMIX process table has no users. 261 ESNOUS
PRIMIX process table returned is incomplete. 262 ESINCO
PRIMIX wait terminated by interrupt. 258 ESINT
Priority ACL not found. 169 ESPANF
Procedure not found. 135 ESPNTF
Process not a slave. 236 ESNSLV
Protected field check. 95 ESVPFC
Protocol handler not available. 125 ESPHNA
Pointer mismatch found (FAM only). 23 ESPTRM
Queue is empty. 321 ESQEMP
Queue is full. 320 ESQFUL
Queue length exceeded. 81 ESQLEX
Queue not found. 322 E$NOQ
Quota set below current usage. 145 ESQEXC
Receive enabled required. 112 ESNRCV
Registered EPF is in use. 329 ESREIU
Remote disk has been shut down. 239 ESRSHD
Remote line is down. 40 ESRLDN
Remote node not enabled. 133 ESNENB
Remote procedure call still pending. 174 ESSPND
Remote system has initialized. 237 ESRSIN
Remote system not up. 140 ESRSNU
Request queue full. 314 ESRQF
Reserved character. 69 ESRCHR
Restricted access file. 192 ESRESF
ROAM access mode conflict 234 ESRAMC
ROAM internal error. 235 ESRIER
Search list not found or invalid. 246 ESLIST
Search lists nested too deeply. 249 ESNEST
Search rule not an optional rule. 248 ESNTQP
Search rule not found or invalid. 247 ESRULE
Segment directory error. 33 ESSDER
Segment directory unit not open. 31 ESSUNO
Segment does not exist. 73 ESNOSG
Segment in use. 102 ESSGIU
Segment not allocated. 271 ESSNAL
Semaphore overflow. 50 ESSEMO
Slave ID mismatch. 205 ESWSLV
Slave ID number not found. 208 ESIDNF
Slave validation error. 136 ESSVAL

Third Edition B-7

Advanced Programmer's Guide, Volume 0

Error Message Numeric
Value

Mnemonic

Speed not selected.
Spooler subsystem not initialized.
Stack overflow in crawlout.
System administrator command only.
System console command only.
Too many emulate devices.
Too many subdirectory levels.
Too many users.
Top-level directory not found or inaccessible.
Unable to allocate file-unit.
Uninitialized block on robust partition.
Unit in use.
Unit not open.
Unit open for block mode VO.
Unit table already returned.
Unit table not in use.
Unknown addressee.
Unknown node name.
Unterminated string.
User already has unit table.
User busy, please wait
User ID not found.
User not receiving now.
User storage heap is corrupted.
User unable to receive messages.
Validation error.
Validation error.
Virtual circuit was cleared.
Warm start occurred.
Window already in address space.
Wrong file type.
XCB unavailable for request.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.

B-8

344 ESSNTS
328 ESNINT
66 ESCROV

226 ESADCM
171 ESSCCM
131 ESTMED
43 ESTMUL
59 ESTMUS

189 ESNFAS
227 ESUAFU
349 ESZERO

4 ESUIUS
3 ESUNOP

232 ESBKIO
165 ESUTAR
166 ESUNIU
116 ESUADR
122 ESUNOD
195 ESUSTR
168 ESUAHU
114 ESUBSY
269 ESUINF
113 ESUNRV
216 ESHPER
115 ESUDEF
323 ESVAL
162 ESNVAL
206 ESVCGC
138 ESWMST
106 ESWAIN
184 ESWFT
311 ESNXCB
20 ESSHUT
25 ESBCOD
44 ESFBST
47 ESTMRU
49 ESBFSV
52 ESFABT
58 ESFAMU
89 ESVKBL
96 ESVNFC
98 ESVIRC

104 ESSDUP
111 ESNECS

Third Edition

Alphabetical List of Error Messages

Error Message Numeric
Value

Mnemonic

Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.
Unused code.

119 ESNROB
141 ESS18E
172 ESBRPA
182 ESBLUE
183 ESNDFD
187 ESBDV
188 ESBFOV
194 ESSYNT
196 ESWNS
197 ESIREQ
198 ESVNG
199 ESSOR
200 ESTMVV
201 ESESV
202 ESVABS
212 ESBLEF
218 ESEPFS
224 ESS WPS
241 ESNRFC
341 ESBCHK
342 ESEXPD

Third Edition B-9

New Features of Recent PRIMOS Revisions

This appendix lists new features significant to the system-level programmer in recent revisions
of PRIMOS. Summaries of new functionality appear in the Software Release Document for the
appropriate PRIMOS revisioa For details on enhanced compiler functionality, consult the
individual language guides. For further information on new or modified subroutines, consult the
Subroutines Reference series.

This appendix lists enhancements made in several recent PRIMOS revisions. The most recent
revision is listed first.

New Features at Revision 22.0
Subroutines
The following subroutines have been added at Revision 22.0:

• The SYN$ subroutines permit you to create and destroy event synchronizers, post
notices on event synchronizers, wait for the posting of a notice on an event
synchronizer, and retrieve a notice from an event synchronizer. Other SYN$
subroutines enable you to group several event synchronizers into an event group and
wait for a notice or retrieve a notice from that event group. Additional SYN$
subroutines enable you to check the status of event synchronizers and event groups.
These subroutines are described in Subroutines Reference V: Event Synchronization.

• The TMRS timer subroutines permit you to create timers that post a notice on a
specified event synchronizer after a specified interval. There are subroutines to
establish timers for a specified elapsed period of time, a specified time of day, or a
specified recurrent interval of time. These subroutines are described in Subroutines
Reference V: Event Synchronization.

• The TMRSGTIM and TMRSGINF subroutines return current system time or
permanent time information. These subroutines are described in Subroutines
Reference III: Operating System.

• The TMRSUNTVCONVERT and TMRSLOCALCONVERT subroutines convert
Universal Time to local time and local time to Universal Time. These subroutines are
described in Subroutines Reference III: Operating System.

T h i r d E d i t i o n C _ 1

Advanced Programmer's Guide, Volume 0

• The SRSS subroutines permit you to determine the server name associated with a
process, the processes mat share the same server name, and the list of all server
names on your system. These subroutines are described in Subroutines Reference V:
Event Synchronization.

• The ISNS subroutines permit you to catalog the server name of a process in a High
Level Name File (HLNF), thus making that server name available to other users, and
to look up the server name of a process by specifying the pathname of an HLNF.
These subroutines are described in Subroutines Reference V: Event Synchronization.

• The ISS subroutines permit you to use the InterServer Communications (ISC) facility
to exchange messages between processes. The processes can be on the same system or
on different systems connected using PRIMENET. Subroutines are provided for
requesting a message exchange session between two processes, specifying event
synchronizers and other features used during the session, sending and receiving
messages, and terminating the session. There are also subroutines for retrieving
information about a session. These subroutines are described in Subroutines Reference
V: Event Synchronization.

• The ASSSET, ASSLST, and ASSLIN subroutines permit you to set the characteristics
of an asynchronous line, retrieve the characteristics of an asynchronous line, and
retrieve the line number of an asynchronous line. These subroutines are described in
Subroutines Reference IV: Libraries and I/O.

• The ERSPRINT and ERSTEXT subroutines permit you to display an error message
on your terminal or return an error message to a variable. These subroutines replace
ERRPRS and ERTXTS, which are now considered obsolete. They are described in
Subroutines Reference III: Operating System.

• CFSEXT extends or truncates a CAM file. This subroutine is described in Subroutines
Reference II: File System.

• CFSREM gets a CAM file's extent map. This subroutine is described in Subroutines
Reference II: File System.

• CFSSME sets a CAM file's extent length value. This subroutine is described in
Subroutines Reference II: File System.

• LNSSET modifies a user's search rules to permit dynamic linking to an EPF library.
This subroutine is described in Subroutines Reference II: File System.

• GENSPW generates a login validation password. This subroutine is described in
Subroutines Reference III: Operating System.

• GTROBS determines whether a specified file is on a robust partition. This subroutine
is described in Subroutines Reference II: File System.

• ECLSCC and ECLSCL supervise editing of input from a terminal or a command file.
ECLSCC is callable from C. ECLSCL is an interface to ECLSCC for non-C
programs. These subroutines are described in Subroutines Reference III: Operating
System.

• NTSLTS returns the characteristics of a PRIMOS network terminal service line. This
subroutine is described in Subroutines Reference IV: Libraries and I/O.

q _ 2 T h i r d E d i t i o n

New Features of Recent PRIMOS Revisions

ICES has been enhanced to support synchronizers, timers, ISC sessions, and other
features of PRIMOS. This subroutine is described in Subroutines Reference III:
Operating System.

PRIMOS Commands
Revision 22.0 has the following new PRIMOS commands:

• The LIST.SESSIONS and LIST.SERVER.NAMES commands and the -SERVER
option for the INTTIAJ_IZE_COMMAJND_ENVIRONMENT (ICE) command support
servers and ISC sessions.

• The UST_CONTIGUOUS_BLOCKS and LIST_EXTENT_MAP CLEM) commands
support CAM files.

• The UXJTAPE command saves files to tape in a format that the UNIX CPIO and
TAR utilities can read. It restores files from a tape created by either CPIO or TAR.

The EDIT_CMD_LINE CECL) facility has been enhanced to include the user's ability to define
terminal key functions for editing a command line. ECL is described in PRIMOS Commands
Reference Guide and PRIMOS User's Guide.

Subsystem Enhancements
The following subsystems have been enhanced with additional features and options. These are
further described in the Software Release Document and the documentation for the individual
subsystems.

• The Spooler subsystem has been enhanced with additional embedded control code
options and several new command features. The SPOOL command has four new
options: -XLATE for character set mapping, -FROM and -TO for printing a part of
a document, and -SPOOL_W for printing a file while it is open for writing. The new
AUXILIARY command passes environment parameters to print handlers. The PROP
command -BACK option has been extended.

• MAGNET has been extended to handle the Prime Extended Character Set (Prime
ECS) and to support large tape buffers.

• Tape utilities (such as MAGSAV and MAGRST) at Rev. 22.0 permit a larger
maximum record size. This enhancement is due to a change in the TSMT subroutine.

New Features at Revision 21.0
Subroutines
The following subroutines are either added or enhanced at Revision 21.0:

T h i r d E d i t i o n C - 3

Advanced Programmer's Guide, Volume 0

• DSSAVL returns data about a disk partition in a structure. Data returned includes the
version number of the structure to be returned, the name of the partition, its
maximum capacity, the number of free records, and the date and time the partition
was last backed up.

• DSSENV returns data about the user's process. Data returned includes the filename of
the currently active abbreviation file; the unit number of the current command input
file; the user's current command level, erase character, and kill characters; the default
and current user timeslice; the CPU and login time remaining; the QUIT inhibit
count; the number and name of the ACL groups to which the user belongs; and the
number, name, node, user ID, and project ID for the user's remote IDs.

• DSSUNI returns data about file-units. Data returned includes information about attach
points, the user number, access bits if the file is open on a local system, open mode,
the command output file-unit, and the system name if the file is open on a remote
system.

• GSNAMS is used by any program to determine the name of the system the program
is running on.

• GSMETR returns system metering information, such as that provided by the USAGE
command. This information can be for general system meters, file system meters,
interrupt process meters, system meters for an individual user, meters for memory
usage, meters for disk usage, and meters for ROAM usage. Returned information
includes the CPU, I/O, and real time used, the number of I/O operations since system
boot, the number of users configured, information about locate buffers, and read and
write operations performed.
KLM$B? enables a program to obtain serialization data from a specified file. KLMSEF
uses a simple filename, supplied by a program, and system search rules to obtain
serialization data from an installed product of that name. Data obtained about the
product can include its version number, its name, its revision number, its serial
number, the name of the licensed user, the software expiration date, PRIMOS
support, the name of the organization distributing the software, the name of the
individual responsible for software revision, the software distribution date, the order
number of the distributed software, and the customer service number for the product
license.
LOVSSW indicates if the login-over-login function is currently permitted.
LUDEVS returns a list of devices that a user can access. The devices listed are those
that are specified by the user with the ASSIGN command. Information returned
includes the version number, the maximum number of devices that may be accessed,
and a list of devices that the user may access.
MMSMLPA makes the last page of a segment available.
MMSMLPU makes the last page of a segment unavailable. Subsequent attempts to
access the page result in the OUT_OF_BOUNDS$ condition.
SGDSEX determines if there is a valid entry at the current position within the
segment directory on a specified unit.

•

q _ 4 T h i r d E d i t i o n

New Features of Recent PRIMOS Revisions

• SNCHKS checks the validity of the system name passed to it. SNCHKS enables
subsystems that deal with system names at a command interface to check the names
for validity without knowing the syntax rules for system names.

• SPSREQ inserts a file into the spool queue.
• SRSABSDS (or SRSABS for FTN) disables optional search rules enabled by

SRSENABL. SRSABSDS absolutely disables an enabled rule, regardless of how
many times the rule has been enabled.

• SRSADDB (or SRSADB for FTN) adds a rule to the start of a search list or before a
specified rule within the list.

• SRSADDE (or SRSADE for FTN) adds a rule to the end of a search list or after a
specified rule within the list.

• SRSCREAT (or SRSCRE for FTN) creates a blank search list. The created search list
does not contain any user-specified or system default search rules. This search list
does, however, contain administrator rules if the System Administrator has established
administrator rules for the search list.

• SRSDEL deletes a specified search list. Both the user's search list and its contents
(including administrator rules) are deleted. The search rules file that was used to set
the search list is unaffected.

• SRSDSABL (or SRSDSA for FTN) disables an optional search rule enabled by
SRSENABL. This subroutine reverses a single SRSENABL operation. Compare this
with SRSABSDS.

• SRSENABL (or SRSENA for FTN) enables an optional search rule. You can disable
enabled rules using SRSDSABL or SRSABSDS.
SRSEXSTR (or SR$EXS for FTN) determines if a search rule exists in a specified
search list. The search rule can be a pathname, an optional search rule, or a search
rule keyword. SRSEXSTR determines the existence of both disabled and enabled
optional search rules.
SR$FR_LS (or SRSFRL for FTN) frees list structure space allocated by SRSLIST or
SRSREAD. Invoke SR$FR_LS after every successful invocation of SRSLIST or
SRSREAD. SR$FR_LS deletes a structure by following the structure's internal pointers.

• SRSINTT (or SRSINI for FTN) initializes all search lists to system defaults. System
default rules include all rules found in the directory SEARCH_RULES*, including
system rules and administrator rules. If no system defaults exist for a search list
SRSLNIT deletes the search list

• SRSLIST (or SRSLIS for FTN) returns the names of the user's search lists. SRSLIST
copies information about all of the user's search lists into a user-specified structure.
SRSLIST creates a separate structure entry for each of the user's search lists.

• SRSNEXTR (or SR$NEX for FTN) reads the rules from a search list, sequentially
and one at a time. Each invocation of SRSNEXTR reads one rule. To read all of the
rules in a search list use SRSREAD. SRSNEXTR reads locator pointer values.

^ SRSNEXTR does not read disabled optional search rules.

^ T h i r d E d i t i o n C - 5

r
•

Advanced Programmer's Guide, Volume 0

SRSREAD (or SRSREA for FTN) reads all of the rules in a search list into a
structure established by the user. SRSREAD reads all rules, including disabled rules.
SRSREAD creates a separate structure entry for each search rule.
SRSREM removes a search rule from a specified search list SRSREM can delete
user-specified and system default search rules and keywords. SRSREM cannot delete
administrator search rules.

• SRSSETL (or SRSSET for FTN) sets or modifies the locator pointer for a search rule.
SRSSETL can set locator pointers of search rules in user-defined search lists and
search rules in the ENTRYS search list.
SRSSSR sets a search list via a user-defined search rules file. SRSSSR can create a
new search list, overwrite an existing search list, or append rules to an existing search
list.
KSBKUP was added to SRSFXS to allow a file to be read by the backup facility.

Other New Features
Revision 21.0 has the following new features and changes:

• Extension to the use of search lists and ability for the user to define search lists. See
the Advanced Programmer's Guide, Volume II: File System for a complete discussion.

• Prime ECS support (expanded character set).
• CBL support of INCLUDES search rules, enhanced magnetic tape support, relative

file enhancements for MIDASPLUS™ and PRISAM,™1 and new compiler options.
• CC support of INCLUDES search rules, the UNIX/ANSI restriction on files opened

with FOPEN, and a new meaning of the returned value of OPEN().
• F77 support of INCLUDES search rules, SHORTCALL functionality in I mode,

longer string constants, and optimization enhancements.
• FTN generation of V-mode code as the compiler default
• PMA support of the MIP pseudo-op, mode determination of variables and

expressions, assembler listing, general register relative format, and IX-mode
instructions.

• Pascal support of INCLUDES search rules and some changes concerning the ANSI/
IEEE standard.

• VRPG support of INCLUDES search rule.
• BIND support of COMPRESS and LNITIALIZE_DATA.
• EMACS interface with Prime Common LISP.

C - 6 T h i r d E d i t i o n

New Features of Recent PRIMOS Revisions

New Features at Revision 20.2
New Features
Revision 20.2 has the following new features and changes:

CBL_LIBRARY supports sequential file access and variable length tables and
records.

CC_LIBRARY resolves potential library routine and runfile conflicts.

System Library supports F77 octal and decimal formatting and an improved random
number generator.
VRSTLI becomes an Executable Program Format (EPF).

MATRIXJLIBRARY (MATHLB) becomes an Executable Program Format (EPF).
VRPG supports new options.
PL/I supports new options.
F77 supports new options, statements, constants, static mapping to tape unit, and
enhanced cross-reference functionality.
CC supports 32LX mode, new options, new switches, a FORTRAN interface, and has
changes in the ctype.h header file.
Pascal supports new options, conforms to the ANSI/EEEE standards, and provides
new options for ANSI/IEEE standards conformance.
The Source Level Debugger supports variable length records, octal and hexadecimal
constants, and has enhancements to MACRO.
BIND supports two new subcommands.
EMACS provides UNIX pathname support, two new PEEL functions, and a new
PEEL atom.
KSDTA and KSDTC keys added to SATRSS to allow setting of date/time accessed
and date/time created.
The subroutine SRSFXS, which supports pathnames, can now be used to search for a
file. TSSRC, which was previously used, is obsolete at this revision.

System Library
The System Library supports the following changes at Rev. 20.2:

• F77 octal and hexadecimal formatting
• Random number generation

T h i r d E d i t i o n C - 7

Advanced Programmer's Guide, Volume 0 " >

^

New Features at Revision 20.0
Subroutines
The following subroutines are either added or enhanced at Revision 20.0:

• DIRSCR creates a new directory. This subroutine accepts pathnames and replaces
CREASS and CREPWS, which are obsolete at this revision.

• DIRSRD reads the contents of a directory sequentially, entry by entry.
• DIRSSE searches the directory with caller-specified selection criteria.
• DKGEOS counts the sectors of a disk that has been formatted in a nonstandard

m a n n e r . * ^ V
• IOCS$_FREE_LOGICAL_UNIT frees a logical file-unit number and makes it

available in the Logical Unit Table (LUTBL).
• IOCS$GET_LOGICAL_UNIT provides an available logical file-unit number to the

calling program.
• SIZES returns the size of a file system entry without updating Date Time Accessed

(DTA).
• UNITS reads the current minimum and maximum unit number for this user.

Other New Features
Revision 20.0 has the following new features and changes:

• Directories are now organized as hashed ACL directories.
• The new file attributes, date and time created (DTC) and date and time last accessed

(DTA) may appear in Rev. 20.0 or later directories (hashed directories). -^^
• The structure returned after calls to DIRSRD or ENTSRD includes the new file

attributes DTC and DTA.

C - 8 T h i r d E d i t i o n

^ _ _ _ M a s t e r i n d e x

r
r

Key to Master Index:

Abbreviat ion

0

I I

I I I

Document Title

Advanced Programmer's Guide, Volume 0:
Introduction and Error Codes

Advanced Programmer's Guide, Volume I:
Bird, and EPFs

Advanced Programmer's Guide, Volume
II: File System

Advanced Programmer's Guide, Volume
III: The Command Environment

Document Number

DOC10066-3LA

D0C10055-1LA

D0C10056-2LA

D0C10057-1LA

Master Index

Symbols

; Ccommand separator character),
I I I : 2-3

~ Ctilde), III: 2-2, 4-11

ABBREV command, III: 2-3

Abbreviation processor, III:
1-19

Abbreviat ions,
disabled at mini-command level,

III: 5-14

Absolute pathname, II: 1-12,
7-2, 7-5

ACSCAT subroutine, II: 2-19,
7-2, 7-5

ACSCHG subroutine, II: 2-22,
7-2, 7-6, 7-7, 7-9

ACSDFT subroutine, II: 2-17,
7-2, 7-3

ACSLIK subroutine, II: 2-20, 7-8

ACSLST subroutine, II: 7-2, 7-9,
7-10

ACSRVT subroutine, II: 4-7

ACSSET subroutine, II: 2-18,
2-21, 7-2, 7-4, 7-6

Access calculation, II: 1-26
concepts, II: 1-19
how and when done, II: 1-19,

1-22
when attaching to a directory,

II: 1-21
when opening files, II: 1-21

Access category, II: 1-10, 1-18,
2-21

creating, II: 7-2

Access Control Lists CACLs), II:
1-5, 1-18, 2-13, 7-11

CSee also Access rights)
Access pairs limit, II: 7-11
changing rights, II: 2-22
default, I I : 2-7
deleting entries, II: 2-23
device, II: 7-1
entries structure, II: 2-16

Index-1 Third Edition

Advanced Programmer's Guide, Volume 0

Access Control Lists CACL^)
Ccontinued)

functions, II: 2-16
l imi ta t ions, I I : 7-11
manipulating, II: 7-1
parsing, II: 7-9
sett ing, I I : 7-2

Access methods,
direct CDAM), II: 1-15
sequential CSAM), II: 1-15

Access rights, CSee also Access
Control Lists CACLs))

A access, II: 2-6
ALL access, II: 1-18, 2-6
changing, II: 2-22
creating a category, II: 2-21
D access, II: 2-6
deleting, II: 2-23
L access, II: 2-6
needed to attach to directory,

II: 2-13
needed to change ACLs, II:

2-17
needed to create object, II:

2-24
needed to delete object, II:

2-12, 2-37
needed to open object, II:

2-27
needed to read object, II:

2-30
needed to write to object, II:

2-34
NONE access, II: 2-6
0 access, II: 2-6
P access, II: 2-6
R access, II: 2-6
setting a category, II: 2-19
setting specific, II: 2-18
setting the same as another

object, II: 2-20
setting to default, II: 2-17
U access, II: 2-6
W access, II: 2-6
X access, II: 2-6

-AOCESS_CATEGORY bit, III: 3-21,
4-33

Accessing text files, II: 5-2

ACL-related subroutines,
structure, I I : 2-16

-added__disks, II: 3-6, 3-16

ADDISK, command, II: 4-5

Addresses,
actual, I: 1-10, 9-2
ECB in the BIND map, I: 9-6
form of, I: 9-2
imaginary, I: 1-10, 1-14, 9-2
link frame in the BIND map, I:

9-7
I__ST__EFF command, I: 9-3
mapping of, I: 9-1
offsets in, I: 9-2
procedure code in the BIND map,

I: 9-6
segment numbers in, I: 9-2
stack frame in DUMP_STACK

command, I: 9-9

Administrator search rules, II:
Z-4

in search rules file, II: 3-10
prooess in i t ia l i za t ion , I I :

3-11

ALCSRA subroutine, III: 3-9,
3-10, 3-13

A l loca t i ng ,
linkage areas, via EPFSALLC,

III: 4-34

ALSSRA subroutine, III: 3-9,
3-10, 3-12

ANYS condition, III: 1-22, 5-15

Appl icat ions,
command environment support

for, I I I : 1 -7
defined, I I I : 1-7

Arguments to program EPFs, I:
1-16

ATS subroutine, II: 2-15, 4-5,
4-7, 4-8, 4-10

ATSABS subroutine, II: 2-15,
4-5, 4-7, 4-9, 4-11

Third Edition Index-2

Master Index

ATSANY subroutine, II: 2-15,
4-5, 4-7, 4-8, 4-13

ATSBCM subroutine, II: 2-8,
2-14, 4-1, 4-6, 4-8

ATSCR subroutine, II: 2-13, 4-1,
4-2, 4-6

ATSREL subroutine, II: 2-15,
4-6, 4-7, 4-16, 4-17

ATCHSS subroutine, II: 4-6

Attach,
to directory, II: 1-16, 2-13
to lower-level directory, I I :

4-16
to specific directory, II: 4-8
to top-level directory, I I :

4-9, 4-13

ATTACHS, II: 3-2, 3-6
-added__disks keyword, II: 3-16
default if not set, II: 3-7,

3-21
default value of, II: 3-6
-system keyword, II: 3-15
use by other search lists, II:

3-21

ATTACH command, II: 1-13, 1-16,
2-8, 2-14, 2-15, 4-3, 4-5,
4 - 9

Attach point,
cache, III: 6-2
current, II: 1-17, 2-5, 2-8,

2-13, 4-1, 4-5, 4-6, 4-9,
4-13

home, II: 1-20, 2-5, 2-8,
2-13, 4-1, 4-3, 4-13

initial, II: 2-5, 2-13, 4-1
manipulating, II: 4-7
questions, II: 4-24
search rules, II: 3-2

Attribute CSee File attributes)

AVAIL, command, II: 9-1

Bad sector, II: 1-7

Bad spot file CBADSPT), II: 1-7

.BIN file, I: 3-6, 3-7

BINARYS, II: 3-2, 3-8

Binary editors, I: 10-1

Binary files,
searching directories for, II:

3-8

BIND, I: 1-2, 1-8
benefits of using, I: 1-9
BINARYS search list, II: 3-8
DYNT subcommand, I: 5-5
ENTRYS search list, II: 3-9
ENTRYNAME subcommand, I: 3-15
entrypoint subcommand, I: 6-8
initialization of static data,

I: 1-19
LIBRARY subcommand, I: 3-11
linking object files, I: 3-7
MAIN subcommand, I: 3-15, 5-5
MAP subcommand, I: 9-5
NOJSENERATICN subcommand, III:

2-2
NCLITERATICN subcommand, III:

2-2
NO_TREEWAI__ subcxammand, III:

2-2
NO_wiLDGARD subcjommand, III:

2-2
RESOLVE_DEDFERREDjCJ0MMCN

subcjommand, I: 3-15
SYMBOL subcommand, I: 3-11,

8-2, &-4
treatment of common area, I:

3-11, 3-15
treatment of IPs, I: 3-10,

3-11
use of segment numbers, I:

3-10

BIND map, I: 9-5 to $-7
determining ECB addresses, I:

9-6
determi ni ng link frame

addresses, I: 9-7

Tndex-3 Third Edition

Advanced Programmer's Guide, Volume 0

BIND map C continued)
determining procedure code

addresses, I: 9-6

Bootstrap file CBOOT), II: 1-7

-B0TTCM_UP bit, III: 3-21

Building shared programs with
SEG, I: 1-8

Cache attach point,
as a static resource, III: 6-2

CALACS subroutine, II: 7-9

Calling sequences,
command, detailed, III: 3-15,

3-17
complete, III: 3-26, 3-29
data types in diagrams, 0: 1-4
diagrams explained, 0: 1-1
error codes, III: 3-5
for <X3mmand functions, III:

3-6
for commands, III: 3-3, 3-4
for program EPFs, III: 3-1
for programs, III: 3-3
sample diagram, 0: 1-2

Cartridge Module Devices CCMDs),
II: 1-5

CHSMOD subroutine, II: 5-47

CLOSFN subroutine, II: 2-36,
5-21, 5-23, 5-48

CLOSFU subroutine, II: 2-36,
5-21, 5-22, 5-48, 6-2, 6-4

CLOSSA subroutine, II: 2-37

CLOSE command, II: 2-36

Closing a file, II: 5-21
after EPFSRUN returns, III:

4-25
on abnormal program

termination, II : 1-30
on normal program termination,

II: 1-30
system object, II: 2-36

CNAMSS subroutine, II: 4-7, 6-43

Code argument,
for CPS, III: 4-12
for EPFSMAP subroutine, III:

4-29
for EPFSRUN, III: 4-22

Coding Guidelines,
general, 0: 1-5
pointer usage, 0: 1-6
pointers, arrays, and

structures, 0: 1-5

OCMISS subroutine, II: 4-7

OOMINPUT files,
command environment support

for, I I I : 1 -3

Command,
defined, I I I : 1-8
invocat ion, I I I : 1-10
name, determination of, III:

2-4

Ctammand calling sequence, III:
3-3

arguments for, III: 3-3
error codes for, III: 3-5

Command environment, III: 1-1
CSee also command processing

in format ion)
abbreviation prooessor, III :

1-19
command features decoder, III:

1-21
ccanmacd interface, III: 1-10
command line reader, III: 1-19
command preprocessor, III:

1-21
command processor, III: 1-20
command prompter, III: 1-19
default on-unit, III: 1-22

Third Edition Index-4

Master Index

Command environment Ccontinued)
features for applications,

I I I : 1-7
features for OOMINPUT files,

II I : 1-3
features for CPL programs,

I I I : 1-4
features for interactive users,

II I : 1-2
features for user-written

funct ions, I I I : 1-7
features for user-written

programs, III: 1-6
key modules, III: 1-16
l i s tene r, I I I : 1 -17
program invokers, III: 1-22

Command features decoder,
1-21

I I I :

Command file,
searching directories for, II:

3 - 7

Coinmand function calling
sequence, III: 3-6, 3-8

Command function invocation,
via CPS, III: 4-13
via EPFSINVK, III: 4-27
via EPFSRUN, III: 4-18

Command functions, II: 2-1, 2-2;
I I I : 4-4

actions of, III: 3-6
arguments for calling sequence,

III : 3-7
behavior when invoked as

commands, III: 4-4
needing command name, III:

3-27
needing local CPL variables,

III : 3-27
sample programs, III: 3-11
special cases of, III: 3-26
usable as commands, III: 3-27

Command information structure,
two versions of, III: 4-23
use of with. EPFSRUN, III: 4-24

Command interface, III: l-io
for one program invoking

a n o t h e r, I I I : l - l l
levels of complexity, III:

1-10

Command invocation, CSee also
command processing
in format ion)

calling sequence, III: 3-2 to
3 - 4

command line, III: 1-12
defined, I I I : 1-11
error codes for, III: 3-5
limits on, III: 1-13
severity code, III: 1-12

Command level, III: 1-17, 5-2
breadth, I: 5-3
defined, I I I : 1-17
l is tener, I I I : 1 -17
l istener, the, I I I : 5-2
mini-CJQmmand level, III: 1-18,

5-14
mul t ip le , I I I : 5 -3
releasing, III: 5-5, 5-6
seaxch rules, II: 3-2

CoMnand line,
accepted by EPF, III: 1-12
as argument in calling

sequence, III: 3-3
as argument to CPS, III: 4-11
use of tilde C~) in front of,

III : 4-11

Ctommard line reader, III: 1-19
recursive invocation of, III:

6-1

Command names, determined by
command processor, III: 2-4

Command preprocessor, III: 1-21

Command Procedure Language CCPL),
II: 2-2

Command processing information,
III: 1-13, 3-15, 3-16, 3-18

-ACAT bit, III: 3-21, 4-33
-BJTIOMJJP bit, III: 3-21
command name, III: 3-19

Index-5 Third Edition

Advanced Programmer's Guide, Volume 0

Command processing information
C continued)

CPL local variables pointer,
III: 3-20

-DIRECTORY bit, III: 3-21,
4-33

-FILE bit, III: 3-21, 4-33
iterat ion bit , I I I : 3-22
-RBF bit, III: 3-21, 4-33
sample program, III: 3-22,

4-51
-SE(3IENT__DIRECTQRY bit, III:

3-21, 4-33
treewalk bit, III: 3-22, 4-31
-VERIFY bit, III: 3-21, 4-33
version, III : 3-19
-WALKJRCM bit, III: 3-22
-WALK__T0 bit, III: 3-22
wildcard bit, III: 3-22, 4-31

Command processor, III: 1-20,
2-1

ABBREV command, handling of,
III: 2-3

actions when invoked by CPS,
III: 4-7

calls STDSCP, III: 1-20
command separator character

C;), handling of, III: 2-3
determines command name, III:

2-1
determines command type, III:

2-5
evaluates function references,

II I : 2-1
evaluates variable references,

II I : 2-1
expression evaluator, III:

1-20
inhibit ion of features, III:

2-2, 2-5
interface with commands, III:

1-10, 1-11
invocation modules, III: 2-7
invokes commands, III: 2-7
iteration, handling of, III:

2-5
l is tener, I I I : 1-17
listener, the, III: 5-2
name generation, handling of,

I I I : 2-7
-NO_VERIFY, handling of, III:

2-7

Command prooessor Ccontinued)
recursive invocation of, III:

6-1
removes null tokens, III: 2-4
RESUME command, III: 2-5
sequence of actions, III: 2-1
simple iteration, handling of,

I I I : 2-5
stack, viewed with DUMP_STACK,

III: 5-2
treewalking, handling of, III:

2-6
-VERIFY, handling of, III: 2-7
wildcards, handling of, III:

2-6

Command prompter, III: 1-19

Command separator character,
II I : 2-3

COMMANDS, search list, II: 3-2,
3-7

Command-information argument,
for EPFSRUN subroutine, III:

4-23

Ccanmand-line argument,
for EPFSRUN subroutine, III:

4-22

Commands, II: 2-1
DUMP_STACK, III: 5-10
ex te rna l , I I I : l - i o
format of, III: 4-3
ICE, III: 1-16, 5-11
INITIAIlZE_CX]MMAND_JEaSIVII05MENT,

III: 1-6, 5-11
interface with command

processor, I I I : l -n
internal, III: 1-9, 4-3
RDY, III: 5-1
recursive invocation of, III:

6-1
REENTER, III: 5-12
RELE^SE_I_EVEL, III: 5-5
REN, III: 5-12
resident in CMDNOO, III: 4-2
resident within PRIMOS, III:

4-2
RLS, III: 5-5

Third Edition Index-6

Master Tndex

Commands Ccontinued)
START, III: 5-14
usable as command functions,

III : 3-27

Common area, I: 3-10, 8-1
defining a shared, I: 8-2
in i t ia l izat ion of , I : 3-11
treatment of by BIND, I: 3-11,

3-15

Common blocks and dynamic link,
I: 2-4

Common storage,
re leasing, I I I : 5-6

O0M0SS subroutine, II: 4-7

Compilers,
search rule support, II: 3-8
searching for include files,

II: 3-8

Complete calling sequence, III:
3-26, 3-29

Compressed files, II: 5-4

Condit ions,
ANYS, III: 1-22
LINKAGE_ERRCR$, III: 1-14
NO_AVAIL_SBGS$, III: 1-16
PAGINa_DEvTCE__FULL$, III: 1-16
QUITS, III: 5-15
REENTERS, III: 5-12
STORAGE, III: 1-15
SYSTEM_STORAGE$, III: 1-15

CONTROL-P CQuit), III: 5-15
CSee also QUITS condition)

CPS subroutine, I: 3-16; III:
1-20, 3-1, 4-9

actions of, III: 4-7
ca.11 ing sequence, III: 4-10
command-line argument of, III:

4-11, 4-14
cp l - l oca l - va rs -p t r, I I I : 4 -13 ,

4-15
error codes returned by, III:

4-17
error-code argument of, III:

4-12, 4-14

CPS subroutine Ccontinued)
flags argument of, III: 4-12
ftn-fcn-ptr argument of, III:

4-14
funct ion-cal l b i t , I I I : 4-12,

4-14
inh ib i t - eva lua t i on b i t , I I I :

4-12, 4-15
rtn-fcn-ptr argument, I I I :

4-13
severity-code argument of,

I I I
used for command invocation,

I I I
used for function invocation,

I I I

I I I

I I I

4-12, 4-14

4-9

4-13
used for program invocation,

4-9
used for recursive invocation,

4-54
when to use it, III: 4-6

CPL, II: 2-2
abilities of programs, III:

4 - 1
command environment support for

programs, III: 1-4
functions and program EPFs, I:

1-16
program invoker, III: 2-7
variables pointed to by

c p l - l o c a l - v a r s - p t r , I I I :
4-15

variables used by command
funct ions, I I I : 3-27

c p l - l o c a l - v a r s - p t r,
argument to CPS, III: 4-13

CREASS subroutine, II: 2-24, 4-7

CREATE command, II: 2-24

Creating a file, II: 2-26

Creat ing file director ies, I I :
2-24

Creating file system objects,
II: 2-24

CREPWS subroutine, II: 2-25, 4-7

Index-7 Third Edition

Advanced Programmer's Guide, Volume 0

Current attach point, II: 1-17,
2-13, 4-1, 4-6, 4-9, 4-13

searching, II: 3-17

Current directory, II: 1-17
opening, II: 4-21, 4-22

Current object position, II:
1-23

Cylinders, II: 1-5

DAM CDirect Access Method), II:
1-15

DAM segment directory, II: 1-25

Data, II: 1-2
fie ld , I I : 1 -2
fi l e , I I : 1 -2
objects, II: 1-2
record, II: 1-2
storage, II: 1-2

Data file,
extending, II: 6-42
positioning in, II: 6-42
reading, II: 6-42
retr ieval , I I : 6-43
storage, II: 6-43
wri t ing, I I : 6-42

DATA segment, I: 3-7, 3-10, 3-19
access to, I: 3-16

Data types,
used in subroutine calls, 0:

1-3

Database,
management, II: 6-1

Date and Time Created CnTC)
att r ibute, I I : 1-33

Date and Time Last Accessed CETA)
att r ibute, I I : 1-32

Date and Time Last Backed Up
CDTB) attribute, II: 1-35

Date and Time Last Modified CniM)
at t r ibute , I I : 1 -33

Deal locat ion,
dynamic memory, I: 3-32
library EPFs, I: 3-32

Debugging an EPF,
BIND cxjmmand, I: 1-18
DBG command, I: 3-35
DUMP__STACK command, I: 1-18
LISTJEPF command, I: 1-18
other useful commands, I: 1-19
setting breakpoints, I: 1-18
VPSD command, I: 1-18, 9-6

Debugging information in EPFs,
I: 3-3, 3-7

Decoder, cxsmmand features, III:
1-21

Default on-unit, III: 1-22
actions on catching QUITS,

III : 5-15
recursive invocation of, III:

6-1

Default search rules CSee Systen
search rules)

DELETE command, II: 2-38

Deleting a file,
within a segment directory,

II: 6-23

Deleting file system objects,
II: 2-37

Detailed command calling
sequence, III: 3-15, 3-17

Device ACLs, II: 7-1

DF_UNIT_ CSee Default on-unit)

DIRSCR subroutine, II: 2-24,
6-30, 6-32, 6-34

DIRSLS subroutine, II: 2-31

Third Edition Index-8

Master Index

DIRSRD subroutine, II: 1-29,
2-31, 6-30, 6-39 to 6-41,
8-1, 8-3

DIRSSE subroutine, II: 2-31

Direct Access Method CDAM), II:
1-15

Directory, I I : 1-3
attaching to, II: 1-16
creating file, I I : 2-25
current, II: 1-17, 4-7
current file unit, II: 1-29
duplicate names, II: 3-21
file, II: 1-8, 1-25
name, II: 1-13, 1-20, 4-7, 4-9
home file unit, II: 1-29
opening file, II: 2-27
origin, II: 1-8, 4-1
origin file unit, II: 1-29
password, II: 1-18
quota, II: 1-39
quota information, II: 9-4
reading, II: 2-31
searching, II: 3-7, 3-8
searching partit ions for, II:

3-6
segment, II: 1-9
top- leve l , I I : 1-8
working, II: 1-13
wri t ing, I I : 2-34

-DIRECTCRY bit, III: 3-21, 4-33

Disk, II: 1-5
CSee also Disk partition)
formatt ing, I I : 1-7
fu l l , I I : 7 -11
log ica l , I I : 1 -7
organization, II: 1-5, 1-7
physical, II: 1-5, 1-7
storage, II: 1-2

Disk partit ions, II: 1-5
as argument, II: 2-16
search all, II: 3-16
search named only, II: 3-I6
searching, II: 3-6, 3-21

Disk record availability table
CDSKRAT), II: 1-7

Disk-shut-down flag, II: 1-26

Displaying common area addresses,
I: 3-15

DUMP_STACK <3ommand, I: 9-9;
III : 5-10

-CNJTJNITS option, III: 5-2,
5-11

to display call history of a
program, III: 5-10

to track program errors, III:
1-18

to view cximmand prooessor
stack, I I I : 5-2

to view your stack, III: 5-10
use at mini-command level,

I I I : 5-14

Dumped bit, II: 1-38

I>amped/not-dumped attribute, II:
1-38

r^mamic link, I: 5-5
common blocks and, I: 2-4
definition of, I: 2-2
sample session, I: 2-4
snapping, I: 2-3, 3-21
to entry points in PRIMOS, I:

3-22
to entrypoints in Application

Library, I: 3-24
to entrypoints in PRIMOS, I:

3-26
to static-mode libraries, I:

3-28

Dynamic 1 inking mechanism, I:
1-3, 2-1, 3-6, 3-19

advantages, I: 2-1

Dynamic links,
resolving, using ENTRYS, II:

3-9

Dynamic memory, I: 1-9
deallocation of, I: 3-32
in EPFs, I: 3-3

Dynamic resources, III: 6-2

Dynamically allocated storage,
re leasing, I I I : 5-6

Index-9 Third Edition

Advanced Programmer's Guide, Volume 0

DYNT, CSee also Dynamic links)
as a subcommand of BIND, I:

5-5

E

ECB (entry control block), I:
1-3

information contained in, I:
1-1

EDAC <3ommand, II: 2-22

ED3 binary editor, I: 10-2 to
10-6

error messages, I: 10-5
obsolete ccmmacds, I: 10-5
subcommands, I: 10-3

EDIT_AOCESS command, II: 2-22

End of file,
positioning to, II: 5-15

ENTSRD subroutine, II: 2-31,
6-30, 8-1 to 8-3

ENTJRYS, II: 3-2, 3-9
[hcffle_dir] keyword, II: 3-17
-primos__direct_entries keyword,

II: 3-17
SR, I: 1-3
-static_mode__libraxies keyword,

II: 3-16

Entry control block CSee ECB)

ENTRYNAME,
as a subcommand of BIND, I:

3-15

Entrypoint, I: 2-2
as a subcjommand of BIND, I:

6-8
determining, for library EPFs,

I: 6-5
invocation, I: 3-19
main, of a program EPF, I:

5-4, 5-5
modifying the search list of,

I: 6-12, 6-13
reserved names, I: 6-5

Entrypoint Ccontinued)
searching EPF libraries for,

II: 3-9
searching ERIMOS system calls

for, II: 3-17
searching static-mode libraries

for, II : 3-16
subroutine, declaring, I: 6-8

Entrypoint search list, I: 6-12,
6-13, 6-32

CSee also Search list)
advanced use of, I: 6-37
default, I: 6-32
examining, I: 6-38

EPF, CSee also Library EPF;
Process-class library EPF;
Program EPF; Program-class
library EPF)

benefits of, I: 1-9
cache, I: 1-18, 3-34
coding guidelines for, I: 7-1
copies of link frame, I: 3-4
debugging information, I: 3-3
debugging of, I: 1-18, 3-35
definition of, I: 1-2
dynamic memory, I: 3-3
id, I I I : 4-24
information contained in, I:

1-18
invocation by CP$ subroutine,

I: 3-16; III: 4-9
invocation by EPFSINVK

subroutine, III: 4-27
invocation by EPFSRUN

subroutine, I: 3-16; II I :
4-20

invocation, forms of, I: 3-16
invoker, I I I : 2-7
l ibrary, I : 1-3
life of an, I: 3-5 to 3-34
linkage text, I: 3-2
mapped, I: 3-16
mechanism, I: 3-1
most flexible format for

programming instructions,
II I : 4-4

multiple invocations of, I:
3-34

new versions, I: 1-2, 3-30,
3-34

old versions, I: 1-2, 3-34
organization of, I: 3-2

" >

^

^

~ >

Third Edition Index-10

Master Index

EPF Ccontinued)
prooedure code, I: 3-2
program, I: 1-3; II: 1-24
program, calling sequence,

III: 3-1
reason for, I: 1-4
recursive invocation of, III:

4-54
removing from memory, I: 1-16,

3-6, 3-30
restrictions on writing in PMA,

I: 7-10 to 7-16
.RPn suffix, I: 1-2
.RUN suffix, I: 1-2
running a remote, I: 3-36
simultaneous use of, I: 3-35
stack space, I: 3-3
CSee also Stack frame)
static information and, I: 4-7
suspending and restarting, I:

1-17
termi nation of, I: 3-6, 3-30,

3-31
types of, I: 1-3
unmapping, I: 3-34
writing in high-level

languages, I: 7-1
writing in PMA, I: 7-2

EPF calling sequence,
arguments for, III: 3-1
command sequence, III: 3-2
program sequence, III: 3-2

EPF generation and use,
phase 1 Ccompilation or

assembly), I: 3-7
phase 10 Cremoval), I: 3-33
phase 10 Cremoval from memory),

III: 4-37
phase 2 Clinking), I: 3-7
phase 3 (invocation), I: 3-15
phase 4 Cmapping), I: 3-16
phase 5 Clinkage allocation),

I: 3-16; III: 4-34
phase 6 (linkage

in i t i a l i za t i on) , I : 3 -19 ;
III: 4-34

phase 7 Centrypoint
invocat ion), I : 3-19; I I I :
4-37

phase 8 (dynamic links
snapped), I: 3-21

phase 9 Ctermination), I: 3-30

EPF generation and use
Ccontinued)

phases in, I: 3-6
sample program, III: 4-47
stages in, I: 3-5

EPF libraries,
searching, II: 3-9

EPFSALLC subroutine, I: 3-6,
3-16; III: 4-34

calling sequence, III: 4-35
error codes, III: 4-42

EPFSCPF subroutine, III: 4-31
calling sequence, III: 4-32
epf-info structure, III: 4-31
error codes, III: 4-42
sample program using, III:

4-51
wildcard bit, III: 4-31

EPFSDEL subroutine, I: 3-6,
3-33; III: 4-37

calling sequence, III: 4-39
error codes, III: 4-44

EPFST2JIT subroutine, I: 3-6,
3-19; III: 4-34

calling sequence, III: 4-36
error codes, III: 4-43

EPFSINVK subroutine, I: 3-6,
3-19; III: 3-1, 3-2

ca l l ing, I I I : 4-37
calling sequence, III: 4-38
compared with EPFSRUN, III:

4-8
error codes, III: 4-44
invoking EPFSALLC before using,

III : 4-34
invoking EPFSCPF before using,

III: 4-31
invoking EPFSDEL after using,

III: 4-37
invoking EPFSINIT before using,

III : 4-34
invoking EPFSMAP for, III:

4-29
key argument, III: 4-34
opening file for, III: 4-28
steps in using, III: 4-27

Index-11 Third Edition

Advanced Programmer's Guide, Volume 0

EPFSINVK subroutine Ccontinued)
used for recursive invocation,

III: 4-54
when to use it, III: 4-8

EPFSMAP subroutine, I: 3-6,
3-16; III: 4-29

access argument, III: 4-29
calling sequence, III: 4-30
code argument, III: 4-29
error codes, III: 4-40
key argument, III: 4-29
unit argument, III: 4-29

EPFSRUN subroutine, I: 3-5,
3-16; III: 3-1, 4-18

actions of, III: 4-8
calling sequence of, III: 4-21
checking returned code value,

III: 4-25
checking returned command

status, III: 4-25
command-information structure,

III: 4-23
cxammand-line argument, III:

4-22
EPF id, III: 4-24
error codes returned by, III:

4-26
error-code argument, III: 4-22
file-unit argument, III: 4-22
funct ion-cal l bi t , I I I : 4-24
invoking, III: 4-20
key argument, III: 4-20
opening EPF file before

cal l ing, I I I : 4-19
r tn - f cn -p t r, I I I : 4 -24
severity-code argument, III:

4-22
steps in using, III: 4-18
used for recursive invocation,

III: 4-54
using and freeing returned

value structure, III: 4-25
when to use it, III: 4-8

EPF-info structure, III: 4-31

Error code,
argument of EPFSRUN subroutine,

III: 4-22
checking code returned by

EPFSRUN, III: 4-25
data base, II: 6-1

Error code Ccontinued)
returned by EPFS subroutines,

III : 4-40
returned by EPFSALLC, III:

4-42
returned by EPFSCPF, III: 4-42
returned by EPFSDEL, III: 4-44
returned by EPFSINIT, III:

4-13
returned by EPFSINVK, III:

4-14
returned by EPFSMAP, III: 4-40
returned by EPFSRUN, III: 4-26
side effects in subroutine

calls, 0: 1-4
standard, use in subroutine

calls, 0: 1-4

Error codes,
alphabetical l isting, 0: B-l
ESACBG, II: 7-12
ESACNF, II: 6-33
ESATNS, II: 8-11
ESBARG, III: 3-5, 4-18, 4-43
ESBFTS, II: 4-21, 6-11
ESBKEY, III: 4-26, 4-41, 4-43
ESBNAM, II: 4-13, 4-15, 4-18,

6-9; III: 3-5, 4-18
ESBOF, II: 5-19, 5-38
ESBPAR, II: 4-12, 4-15, 4-18,

5-28, 6-33, 7-11, 8-11; III:
3-5, 4-11 to 4-14

ESBUNT, II: 5-49; III: 4-26,
4-11

ESBVER, II: 6-33; III: 4-18,
4-27, 4-41 to 4-14

ESCMND, III: 3-5, 4-18
ESDIRE, II: 1-25, 8-11; III:

4-17
ESEKFL, II: 5-13, 5-28, 5-39,

6-15, 6-20, 6-33
ESETNS, II: 6-34
ESECEB, III: 1-14, 4-14
ESEOF, II: 1-23, 5-19, 5-28,

5-36, 5-38, 6-11, 6-14, 6-28,
6-39; III: 4-17, 4-26

ESEPFL, III: 4-11
ESEPFT, III: 4-11 to 4-45
ESEXST, II: 6-33
ESFDEL, II: 6-23
ESFIUS, II: 1-35, 5-12, 5-19,

6-8, 6-20, 10-4; III: 4-17
ESFNTF, II: 4-6, 4-13, 5-13,

5-17, 6-8, 6-33; III: 4-18

Third Edition Tndex-12

Master Index

Error codes Ccontinued)
ESFNTS
ESFUIU
ESIACL
ESILTD
ESILTE
ESITRE

3-5,
ESIVCM
ESMISA
ESMXQB

6-9,
ESNATT

4-18
ESNDAM
ESNFAS
ESNINF

4-18
ESNMLG
ESNMTS
ESNMVS
ESNOQD
ESNOVA
ESNRIT

6-20
4-17

ESNTSD
ESNTUD
ESPNAC
ESROCM
ESSHDN
ESSUNO
ESSWPR
ESUIUS
ESUNOP

6-5,
III : 4-26,

ESWTPR, II:

II: 6-20, 6-23
II: 5-19
II: 5-14, 8-11
III: 4-42, 4-13
III: 4-43
II: 4-8, 5-14; III:

4-18
III : 3-6
III : 3-6
II: 5-14, 5-28, 5-39,

6-17, 6-21, 6-33
II: 4-3, 4-5, 4-12,

4-21, 4-22
III: 4-18, 4-10, 4-41
II: 4-15, 6-9, 6-34
II: 5-14, 6-21; III:

I I I : 3-5
III: 4-26, 4-11
III: 4-27, 4-41
II: 6-33
III: 4-41
II: 4-22, 5-13, 6-8,

6-33, 6-35, 8-11; III:
4-10

II: 1-25
II: 1-25
II: 6-33
III: 4-26
II: 1-26, 4-3, 4-5
II: 6-23
III: 4-45
II: 5-19

5-19, 5-28, 5-39,
6-15, 6-28, 6-39;
4-40
6 - 9

I I :
6-12,

numerical listing, 0: A-2

Escape sequences,
as a static resource, III: 6-4

ESR CSee EXPAND_SEARCH__RULES)

Evaluation of function and
variable references, I I I :
2-1

Executable code file, II: 3-17

Executable program format CSee
EPF)

EXPAND_SEARC^_RULES CESR) CPL
function, II: 3-19

EXPAND_SEARCH__RULES command, II:
3-2, 3-5, 3-19

ATTACHS used as default, II:
3-6

OOMMANDSS used as default, II:
3-7

partition names, II: 3-6
pathnames, II: 3-7
referencing_dir option, I I :

3-18

Expanded listings, I: 9-13

Expression evaluator, III: 1-20

External commands, III: 1-10

External linkage information, I:
3-7

Faulted IP, I: 1-3, 2-2, 3-11,
3-19, 3-21, 6-17

how to avoid sharing, I: 4-10
sharing of, I: 4-9

Field, I I : 1-2

FILSEL subroutine, II: 2-38,
4-7, 5-18

File, I I : 4-6
appending to, II: 1-23
Closing, II: 1-30, 5-21
CSee also Closing a file)
closing after EPFSRUN returns,

III: 4-25
creating, II: 1-27, 2-26
DAM, II: 1-25
data, II: 6-12, 6-43
defin i t ion , I I : 1 -10
maximum length, II: 5-5
open, using search rule

subroutine, II: 3-19
opening, II: 2-29, 5-6
CSee also Opening file)
opening for VMFA access, III:

4-19

Index-13 Third Edition

Advanced Programmer's Guide, Volume 0

File Ccontinued)
organization, II: 6-2
pointer, I I : 1-29
posit ioning, I I : 1-29
reading, II: 2-33
SAM, II: 1-25
text, I I : 1-10
truncating, II: 1-29, 5-17
type, II: 1-37
unit number, II: 1-28
user, II: 1-10
wri t ing, I I : 2-35

File access control, II: 1-16

File access methods, II: 1-15
Direct CDAM), II: 1-15
Sequential CSAM), II: 1-15

File attributes, II: 1-31, 8-1
date and time created (TflC),

II: 1-33
date and time last accessed

CDTA), II: 1-32
date and time last backed up

CDTB), II: 1-35
date and time last modified

CETM), II: 1-33
dumped/not-dumped, II: 1-38
file type, II: 1-37
read/write lock, II: 1-35
sett ing, I I : 8-6
special/not-special, I I : 1-38

-FILE bit, III: 3-21, 4-33

File directory, II: 1-8
attr ibutes, I I : 6-31
creating, II: 2-25, 6-31
manipulating, II: 6-30
opening, II: 6-34
scanning, II: 6-36

File names,
as a static resource, III: 6-3
creating dynamic file names,

III: 6-3
search order of, III: 1-10

File system, II: 1-1
(xmnunicating with, II: 2-1
interfaces, II: 2-1
objects, II: 1-5
search, II: 1-14

File type attribute, II: 1-37

File unit, II: 1-23, 2-8
abnormal terminate, II: 1-30
accessing, II: 1-23
calculated access to object,

II: 1—26
closing, II: 1-23
current object position, II:

1-23
disk-shut-down flag, II: 1-26
dynamic number allocation, II:

1-27
multiple opens, II: 2-9
normal terminate, II: 1-30
object type, II: 1-25
object-modified flag, II: 1-25
open mode, II: 1-24
opening, II: 1-23
posit ioning, I I : 1-23
read/write lock, II: 1-26
static number allocation, II:

1-28

File unit argument,
of EPFSRUN subroutine, III:

4-22

File unit number,
as argument to EPFSMAP, III:

4-29

File units,
as a static resource, III: 6-1

Filename,
expand to full pathname, II:

3-5
getting pathname for, II: 3-2

Fixed-length record file,
blocking factor, II: 5-44,

5-15
calculating record position,

II: 5-16
end of file, II: 5-45
format, II: 5-44
incomplete read/write, II:

5-37
positioning, II: 5-31, 5-37,

5-42
reading, II: 5-31
record length, II: 5-44

Third Edition Tndex-14

Master Tndex

Fixed-length record file
Ccontinued)

writ ing, I I : 5-31
writing records to open file

unit, I I : 5-39

Fixed-length records, II: 5-4
advantages, II: 5-4

Fixed-media disks CFMDs), II:
1-5

Formatting a disk, II: 1-7

FRESRA subroutine, III: 4-45
caning sequence, III: 4-46
when to use it, III: 4-8

GPASSS subroutine, II: 4-7

GPATHS subroutine, II: 4-7,
4-18, 4-20, 4-24, 6-13

H

Home attach point, II: 1-16,
2-13, 4-3, 4-13

Home directory, II: 1-16, 4-9
searching, II: 3-17

Freeing memory,
via FRESRA subroutine, III:

4-45
via ICE command, III: 1-16

Freeing segments of R-mode
programs, I: 1-7

Full pathname,
determining, II: 4-18

Function invocation, CSee also
Command function invocation)

cjommand line, III: 1-12
d e fi n e d , I I I : l - l l
returned character string,

III: 1-12
severity code, III: 1-12
via EPFSINVK, III: 4-27
via EPFSRUN, III: 4-18

Function references, evaluation
of, I I I : 2-4

I-mode programs, I: 1-5

ICE command, III: 5-11
use of, III: 1-16

Imaginary addresses and EPF
sharing, I: 1-14

Impure code, I: 1-13
separation of pure code from,

I: 1-12, 7-2

IMPURE segment, I: 3-7, 3-10,
3-19

access to, I: 3-16

INCLUDES, II: 3-2, 3-8
if doesn't exist, II: 3-8
[i«ferencing_dir] keyword, II:

3-18

Func t ion-ca l l ,
argument, III: 3-9
bit, III: 4-12, 4-14, 4-24

Functions, CSee also Command
funct ions)

command environment support
for, I I I : 1 -7

defined, III: 1-9, 1-12
interaction with command

prooessor, I I I : l -n
invocat ion of , I I I : l - l l

Include file,
searching directories for, II:

3-8

Indirect pointer CSee IP)

Tnh1 b1 t-evaluation bit, III:
4-12, 4-15

Inhibition of <3ommand processor
features, I I I : 2-5

Index-15 Third Edition

Advanced Programmer's Guide, Volume 0

Initial attach point, II: 2-13
searching, II: 3-17

I n i t i a l i z a t i o n ,
of linkage areas, via EPFSINIT,

III: 4-34
of variables, I: 1-19
shared data, I: 8-3, 8-4

Init ial ize process,
search list created, II: 3-2
search list deleted, II: 3-6
search list set, II: 3-11
search rule set, II: 3-1

INITIAIJ:ZE_COMMAlCLENVIRaNME^
command, III: 5-11

use of, III: 1-16

Interactive users,
cjommand environment support

for, I I I : 1 -2

Internal ccanmands, III: 1-9

Tnteinal-command invoker, III:
2-7

Interprocess communication,
caveats, II: 10-4
competing servers, II: 10-7
concurrent access to data base,

II: 10-10
general concepts, II: 10-1
models, II: 10-5
read/write locks, II: 10-2
transaction file, II: 10-5
two-process transaction models,

II: 10-9

Invocation, CSee also Command

Invoking an EPF, I: 1-3, 3-15,
5-1, 5-2

sample program, III: 4-47
subroutines for, I: 3-5

IP Cindirect pointer), I: 1-3,
3-7

faulted, I: 1-3, 2-2, 3-11,
3-21, 6-17

how to avoid sharing faulted,
I: 4-10

resolution of at runtime, I:
3-10

sharing of faulted, I: 4-9
treatment of by BIND, I: 3-10,

3-11

IPC CSee Interprocess
communication)

I t e r a t i o n ,
handling of by command

processor, II I : 2-5
simple, III: 2-5

Iterat ion bi t , I I I : 3-22

Iteration prooessor,
recursive invocation of, III:

6-1

K

KSGETU key, III: 4-19

KSINVK key, III: 4-20

KSINVKJ3EL key, III: 4-20

invocation; Function KSRESTOREjONLY key, III: 4-20
invocation; Program
invocat ion) KSVMR key III: 4-19

limits on, III: 1-13
of commands, III: l-n Key,
of commands, by command KSBKUP, I I 5-11

prooessor, III: 2-7 KSCLOS, I I 2-37
of functions, III: 1-11 KSCURA, I I 4-19
of programs, III: l-io KSDELE, I I 2-39
of programs, from within KSDFLT, I I 8-9

programs, III: 4-1 KSEMPB, I I 8-7, 8-9
recursive, III : 4-54 KSDTA, II: 8-7

KSDTC, II: 8-7

lird Edition Tndex-16

Key Ccontinued)ksdtim, I I : 8-7
KSEXCL, I I 8-9
KSEXST, I I 5-47
KSFREE, I I 2-32, 6-26
KSFULL, I I 2-32, 6-26
KSGETU I I 5-12, 5-48, 5-49,

6-5
KSHDMA I I 4-19
KSINIA I I 4-19
KSINIT I I 1-29, 6-39
KSMSIZ I I : 2-34
KSNCAM I I 5-12, 6-22

_ 0 h k KSNDAM I I : 5-11, 6-22f^ KSNCNE I I 8-9f KSNSAM I I . 5-11, 6-22
KSNSGD I I : 5-12, 6-5, 6-22
KSNSGS I I : 5-12, 6-5, 6-22
KSPOSN I I : 5-36
KSPREA I I : 5-36
KSPROT , I I : 8-7, 8-9
KSRDWR I I : 5-11, 5-18, 6-1,

6-18
KSREAD , II: 5-11, 5-36, 5-48,r 6-1, 6-18, 6-39
KSRPOS , II: 5-36
KSRWLK , II: 8-7, 8-9
KSSDL, II: 8-7
KSSETC , II: 2-16, 4-1, 4-12,

4-15 , 4-16
KSSETH , II: 2-16, 4-1, 4-12,

4-15 , 4-16
KSTRNC , II: 5-36
KSUPDT , II: 8-9c KSVMR, II: 5-11, 6-18w KSWRIT , II: 5-11, 5-36 5-48,

6-18

Key argument,
for EPFSINVK subroutine, III:

4-34
for EPFSMAP subroutine, III:

4-29
for EPFSRUN subroutine, III:

4-20
use in subroutine calls, 0:

1-4

LB CSee Linkage base)

Master Index

LBSSET subroutine, III: 3-27

LTRK11B binary editor, I: 10-1

LIBRARY,
as a subcommand of BIND, I:

3-11
external references resolved

by, I: 3-11

Library EPF, I: 1-3, 1-9
assembling the PMA entrypoint

file for, I: 6-10
building a PMA entrypoint file

for, I: 6-8, 6-9
choosing the right type of, I:

6-4, 6-14, 6-15
coding a subroutine for, I:

6-4
compiling a subroutine for, I:

6-4
deallocation of, I: 3-32
definition of, I: 6-2
determining class requirements

of, I: 6-29
determining entrypoints of, I:

6-1
installing a library file, I:

6-11
installing the library EPF, I:

6-11
invoking, I: 1-3
linking subroutines of, I: 6-7
mechanism, I: 6-39
modifying the entrypoint search

list, I: 6-12
process-class, I: 3-32, 3-33
program's view of, I: 6-4
program-class, I: 3-32, 3-33
programmer's view of, I: 6-2
restriction on class mixing of,

I: 6-16
restriction on use of language

I/O, I: 6-17
steps in building, I: 6-2, 6-4

to 6-13
storage allocation issues, I:

6-41
storing data in linkage area

of, I: 6-17
using DBG on, I: 6-30, 6-31
using EDB to generate a library

file, I: 6-10

Tndex-17 Third Edition

Advanced Programmer's Guide, Volume 0

Limits on calling program EPFs,
I: 5-3

T.ink frame, I: 3-4, 3-5, 3-10

T linkage,
area, I: 3-32
area, storing data in, I:

6-17, 6-18
base, I: 3-1
faul t , I : 2-4
initialization, I: 3-19, 6-18
releasing areas, III: 5-6
text, I: 3-7
text, in EPFs, I: 3-2
text, in subroutines, I: 3-4

UNKAGE_ERRCR$ condition, III:
1-14, 1-15

Linking,
loaders, history of, I: 1-4
purpose of, I: 3-7
uti l i t ies, I : 1-2

LIST__AOCESS command, II: 1-20

LIST_EPF command, I: 9-3

LISTJLIMITS,
use Of, III: 1-14

LIST_SEARCH_RULES command, II:
3-12

disabled search rules, II:
3-15

UST__SEGMENT,
use Of, I: 9-5; III: 1-14

Listener, III: 1-17, 5-2
and mini -command level, III:

5-14
multiple invocations, III: 5-3
recursive invocation of, III:

6-1

IDAD, I: 1-2, 1-4

Local objects, II: 1-5

Login CSee Initialize prooess)

Long prompt, III: 5-5

Lower-level Directory, II: 1-9

LSR CSee KEST__SEAROUlULES)

LVSGET subroutine, III: 3-27

M

MAIN,
as a subcommand of BIND, I:

3-15, 5-5

MAKE command, II: 1-7

MAP,
as a subcoiranand of BIND, I:

9-5

Mapping an EPF, I: 3-16

Maps ard addresses, I: 9-1

Master file directory CMFD), II:
1-8

Memory,
allocation of, I: 1-10, 1-11
dynamic, I: 1-9
releasing via FRESRA

subroutine, III: 4-45
stat ic, I : 1-9
system-wide limits on, III:

1-15

MFD Cmaster file directory), II:
1-8

Mini-command, level, III: 1-18,
5-14

Multiple invocations of an EPF,
I: 3-34

N
Name generation,

handled by command prooessor,
II I : 2-7

Third Edition Index-18

Master Index

Names of commands, determined by
command processor, III: 2-4

New Features,
Revision 20.0, 0: C-8
Revision 20.2, 0: C-7
Revision 21.0, 0: C-3
Revision 22.0, 0: C-l

N0__AVAIL_j3EGS$ cordition, III:
1-16

-NO_VERIFY option,
handled by command processor,

I I I : 2-7

Null tokens, removal of from
command line, III: 2-4

NWS filename prefix, III: 4-4

NX$ filename prefix, III: 4-4

Object,
Closing, II: 2-36
creating, II: 1-15, 2-10
creating file system, II: 2-24
current position, II: 1-23
deleting, II: 2-12, 2-37
file system, II: 1-2, 1-5
local , I I : 1-5
name, II: l-ll, 2-7, 4-8
naming, II: 1-15
opening, II: 2-11
opening file system, II: 2-27
reading, II: 2-11, 2-30
remote, II: 1-5
simple name, II: 4-8
specifying names, II: 2-7
type, II: 1-25
writing, II: 2-12, 2-34

Object file, I: 3-7

Object naming conventions, II:
1-15

absolute pathname, II: 1-12
components, II: 1-11
full pathname, II: 1-14

Object naming conventions
Ccontinued)

relative pathname, II: 1-12
simple pathname, II: 1-13

OPEN command, II: 2-27

Open mode, II: 1-24

Opening,
EPF file for VMFA access, III:

4-19
file for VMFA read, possible

error codes, III: 4-40

Opening a file, II: 1-26, 2-29
file pointer, II: 1-29
file unit number, II: 1-28
file unit number allocation,

II: 1-27
using search rules, II: 3-5
within a segment directory,

II: 6-17

Opening a file directory, II:
2-27

Opening a file system object,
II: 2-27

ORIGIN command, II: 2-13

Origin directory, II: 1-8
searching, II: 3-17

PAGINTi_DEVICE_FULL$ condition,
III: 1-16

Partition CSee Disk partitions)

Password directory, II: 1-18

Pathname, II: l-ll
absolute, II: 1-12
full, II: 1-14, 4-18
par t ia l , I I : 3-2
relat ive, I I : 1-12
simple, II: 1-13

PB CSee Prooedure, base)

Index-19 Third Edition

Advanced Programmer's Guide, Volume 0

PCL instruction, I: 3-4, 3-7,
3-19

Performance,
disk access, II: 3-3

Permissions CSee Access Control
Lists (AGLfiU

PHANTS subroutine, II: 4-7

Phantoms,
search lists of, II: 3-2

PHNTMS subroutine, II: 4-7

PMA,
restrictions for EPF execution,

I: 7-10
writing EPFs in, I: 7-2 to

Prooedure, II: 1-3
base, I: 3-4
code in EPFs, I: 3-2
code in subroutines, I: 3-4
frame, I: 3-4
main, of a program EPF, I: 5-1
management, I: 3-4
text, I: 3-7

Prooedure code storage,
releasing, I I I : 5-6

Process-class library EPF, I:
3-32, 3-33, 6-41

choice of, I: 6-14
link sequence for, I: 6-7
restrictions on use of, I:

6-14
using for shared data, I: 8-5

7-10 Program,
I-mode, I: 1-5

Pointer, returned value, I I I : R-mode, I: 1-4, 1-5
3-9 S-mode, I: 1-5

Positioning a file, II: 1-29

PRIMOS,
error codes ordered

alphabetically, 0: B-l
error codes ordered

numerically, 0: A-2
mnemonics for error codes, 0:

A-1
Revision 20.0 new features, 0

C-8
Revision 20.2 new features, 0

C-7
Revision 21.0 new features, 0

C-3
Revision 22.0 new features, 0

C - l

PRIMOS commands,
searching for, II: 3-7

PRIMOS file system,
elements of, II: 1-4
tree structure, II: 1-5

PROC segment, I: 3-7, 3-10
access to, I: 3-15

static-mode, I: 1-4
V-mode, I: 1-5

Program EPF, I: 1-3, 1-9
arguments to, I: 1-16, 5-4
calling sequence, III: 3-1
command line preprocessing, I

1-17
CPL functions, I: 1-16
data returned from, I: 5-3
data supplied to, I: 5-3
definition of, I: 5-1
invoking, I: 1-3, 5-1, 5-2
invoking program's view of, I

5-2
limits on calling, I: 5-3
main entrypoint of, I: 5-4,

7-2
main procedure of, I: 5-4
programmer's view of, I: 5-1
stacking of, I: 1-17
user's view of, I: 5-2
writing the main program, I:

5-4

Program invocation,
calling sequence, III: 3-2,

3-3
deciding which interface to

use, III: 4-6

^ >

Third Edition Index-20

Master Tndflx

Program invocation Ccontinued)
defined, II I : 1-10
from within programs, III: 4-1
limits on, III: 1-13

Program-class library EPF, I:
3-32, 3-33, 6-10

choice of, I: 6-14
link sequence for, I: 6-7

Programs,
command environment support

for, I I I : 1 -6
format of, III: 4-3
interface with command

processor, III: 1-10
invoking programs from, III:

4-1
resident on disk, III: 4-2

Prompter, command, III: 1-19

Prompts, set by RDY command,
III : 5-5

Quota, II: 1-39
di rectory, I I : 9-1
MFD, II: 9-2

Quota exceeded, II: 7-11

R

R mode, I: 1-4

R-mode programs, I: 1-4, 1-5
freeing segments of, I: 1-7

-RBF bit, III: 3-21, 4-33

RDT.TNS subroutine, II: 5-2, 5-24
to 5-26, 5-31

RDY command, III: 5-4
in LOGIN.CPL files, III: 5-5
to specify system prompts,

II I : 5-1

PRTN instruction, I: 3-4

PRWFSS subroutine, II: 2-35,
5-2, 5-16 to 5-18, 5-20,
5-29, 5-31 to 5-12

Pure code,
separation of impure code from,

I: 1-12, 7-2
sharing of, I: 1-13

QSREAD subroutine, II: 9-1, 9-3

QSSET subroutine, II: 9-5

QUITS condition, III: 5-15
as handled by default on-unit,

III: 5-15
how your program can handle it,

III: 5-15, 5-16
resignaling the condition,

III: 5-16
sample program, III: 5-16

Read/write lock attribute, II:
1-35

Read/write locks, II: 1-26
documenting, II: 10-2
EXCL, II: 10-2
fi le , I I : 10 -2
per file, II: 10-3
safety check, II: 10-2
system, II: 10-2
UPDT, II: 10-2

Reader, command line, III: 1-19

Reading file system objects, II:
2-30

Record, II: 1-2
date, II: 1-2
fixed- length, I I : 5-4
logical , I I : 1-7
physical, II : 1-7
text , I I : 1-2
variable length, II: 5-3

Recursive command environment,
III: 6-1

creating dynamic screen
handlers for, III: 6-3

Index-21 Third Edition

Advanced Programmer's Guide, Volume 0

Recursive command environment
(continued)

file units not recursive, III:
6-1

generating dynamic file names
for, I I I : 6-3

handling terminal escape
sequences in, III: 6-4

limits on use of cache attach
point , I I I : 6-2

Recursive invocation of EPFs,
III: 4-54

behavior of static storage
during, III: 4-54

redirecting termi nal I/O
during, III: 4-55

REENTER command, III: 5-12
used with RELEAS5_LEVEL

command, III: 5-13

REENTERS condition, III: 5-12

Referencing directory, II: 3-18

Relative pathname, II: 1-12

RELEASE_LEVEL command., Ill: 5-5,
5-7

releasing to a particular
level , I I I : 5-7

resources released by, III:
5-6

used to restart a suspended
program, III: 5-7

used with REENTER command,
III: 5-13

Releasing,
memory holding returned value,

III: 4-45
resources, III: 5-6

Remote disks,
ATTACHS search list for, II:

3-6

Remote File Access (RFA), II:
1-5

Remote objects, II: 1-5

Removal of EPFs, I: 1-16, 3-30
from memory via EPFSDEL

subroutine, I I I : 4-37
process-class library, I: 3-33
program EPF, I: 3-33
program-class library, I: 3-33

REN command (See REENTER
command)

Replacing static-mode libraries,
I: 3-30

Reserved entrypoint names, I:
6-5

list of, I: 6-6

RESOLVEJDEFERRED COMMON,
as a subcommand of BIND, I:

3-15
to display common area address,

I: 3-15

Resources,
dynamic, III: 6-2
per-user l imits, III: 1-13
releasing, I I I : 5-6
s ta t i c , I I I : 6 -2
system-wide limits, III: 1-16

RESTS$ subroutine, II: 4-7

Restarting suspended programs,
I I I : 5-7

with REENTER command, III:
5-13

RESUSS subroutine, II: 4-7

RESUME command, II: 2-2
special treatment by command

processor, II I : 2-5

Return codes, II: 2-9

Returned character strings, III:
1-12

Returned command status,
checking after EPFSRUN, III:

4-25

Returned function value pointer
CSee Rtn-fcn-ptr)

Third Edition Index-22

Master Index

Returned function value
st ructure, I I I : 4-15

accessed from FORTRAN, III:
4-15, 4-16

accessed from PL1G, III: 4-15
deallocating memory via FRESRA,

I I I : 4-45
using and freeing it after

calling EPFSRUN, III: 4-25

Returned value,
defined, I I I : 3 -6
freeing memory used by, III:

4-45

Returned value pointer CSee
R t n - f c n - p t r)

Revision 20.0,
new features, 0: C-8

Revision 20.2,
new features, 0: C-7

Revision 21.0,
new features, 0: C-3

Revision 22.0,
new features, 0: C-l

RJ_S command (See RELEASEJLEVEL
command)

.RPn suffix, I: 1-2

Rtn-fcn-ptr, III: 3-9, 4-13,
4-14

declaration of structure, III:
4-15

for EPFSRUN subroutine, III:
4-24

.RUN suffix, I: 1-2

Running a remote EPF, I: 3-36

RWLOCK,
configura t ion d i rec t ive , I I :

10-2

S mode, I: 1-5

SAC command, II: 2-17

SAM, II: 1-15
segment directory, II: 1-25

Sample programs,
command functions, III: 3-11,

3-14
hand! i ng command processing

information, II I : 4-51
handling QUITS condition, III:

5-16
showing EPF invocation and

execution, III: 4-47
using command processing

information, I I I : 3-22

SATRSS subroutine, II: 2-9, 4-7,
8-6, 8-8, 8-10, 10-3

SAVES$ subroutine, II: 4-7

SB CSee Stack base)

Screen handlers, building, III:
6-3

Search list, II: 3-1
(See also Entrypoint search

l i s t)
appending to, II: 3-11
creating, II: 3-20
defaults, II: 3-2, 3-4
deleted automatically, II: 3-6
deleting, II: 3-20
duplicate rules, II: 3-11
i n i t i a l i z i ng , I I : 3 -20
l ist ing al l , I I : 3-20
naming, II: 3-11
reading, II: 3-20
setting, II: 3-2, 3-9 to 3-11,

3-20
user-defined, II: 3-3, 3-5

Search order for filenames, III:
1-10

Index-23 Third Edition

Advanced Programmer's Guide, Volume 0

Search rule, I: 1-3, 6-12, 6-33
to 6-36; II: 3-1

adding rule to list, II: 3-20
checking existence of, II:

3-20
creating, II: 3-10
deleting rule from list, II:

3-20
disabled/enabled, II: 3-15
duplicate rule, II: 3-11
enabl ing/disabl ing rule, I I :

3-20
format, II: 3-21
locator pointer, II: 3-5
nonexistent object, II: 3-11,

3-21
optional, II: 3-15
reading, II: 3-20
setting locator pointer, II:

3-20
supplying at runtime, II: 3-18
user-specified, II: 3-3, 3-5

Search rule keywords, II: 3-12
-added__disks, II: 3-6, 3-16
[home_dir], II: 3-17
- insert , I I : 3-12
-optional, I I : 3-15
[or ig in_di r] , I I : 3-17
-pr imos_di rect_ent r ies , I I :

3-17
[referencing_dir] , I I : 3-18
-statlc_mode_.l ibraries, II:

3-16
-system, II: 3-13, 3-15

Search rule subroutines, II:
3-2, 3-11, 3-12, 3-19, 3-20

OPSRS, II: 3-18
OPSRSS, II: 3-18
SRSENABL, II: 3-15
SRSINIT, II: 3-11
SRSREAD, II: 3-12
SRSSSR, II: 3-11, 3-14

Search rules facility, II: 3-1
error in search list, II: 3-11
invoking, II: 3-2
performance, II: 3-3
process-based, II: 3-2
search scope, II: 3-3
search sequence, II: 3-2, 3-3,

3-21
using, II: 3-2, 3-3

Search rules file, II: 3-1
comments, II: 3-10
creat ing, I I : 3-9
effect of changes to, II: 3-11
mult iple files, II : 3-12
naming, II: 3-9
nesting, II: 3-12
used to set search list, II:

3-11

SEARCHJRULES*, II: 3-4, 3-11

sectors, II: 1-5

SEG, I: 1-2, 1-4
building shared programs, I:

1-8
for invoking V- or I-mode

programs, I: 1-7
for shared procedure segments,

I: 1-8
generating static-mode images,

I: 1-8

Segment access,
as argument to EPFSMAP

subroutine, III: 4-29
to DATA segments, I: 3-16
to IMPURE segments, I: 3-16
to PROC segments, I: 3-15

Segment directory, II: 1-9, 6-2
closing, II : 6-4
deleting a file, II: 6-23
ending position, II: 6-28
extending, II: 6-14
extending full length, II:

6-15
find free entry, II: 6-25
find full entry, II: 6-25
opening, II: 6-3
opening a file, II: 6-17
positioning in, II: 6-10
reading, II: 2-32
scanning, II: 6-25
size, II: 6-15
starting position, II: 6-26
wri t ing, I I : 2-34

Segment number,
for IMPURE and DATA segment,

I: 9-3
for PURE segment, I: 9-3
in addresses, I: 9-2

Third Edition Index-24

Master Index

Segment number (continued)
sign of, I: 9-2, 9-3
use of by BIND, I: 3-10

-SEGMENT_D3RECTCKY bit, III:
3-21, 4-33

Segments,
shared system-wide, I: 1-8,

8-3
stat ic, I : 8-3

Separation of pure and impure
code, I: 1-13, 1-15

Sequential Access Method (SAM),
II: 1-15

Set search list, II: 3-2, 3-9 to
3-11

nonexistent object, II: 3-11
relocating system rules, II:

3-14
suppressing system rules, II:

3-14
using multiple files, II: 3-12

SET_A0CESS command, II: 2-17

SET_SEARCH_RULES command, II:
3-11

error, I I : 3-13
-no_system option, II: 3-14
reset option, II: 3-11

Severity code,
as argument to CPS, III: 4-12
as argument to EPFSRUN, III:

4-22
for command calling sequence,

III : 3-6
returned by EPF, III: 1-12

SGDSDL subroutine, II: 2-34,
2-38, 5-48, 6-2, 6-3, 6-24,
6-25

SGDSEX: subroutine, II: 5-47,
5-48, 6-2, 6-3

SGDSOP subroutine, II: 5-2, 5-7,
5-9, 5-18, 6-2, 6-3, 6-17,
6-19, 6-22

SGCRSS subroutine, II: 2-31,
2-34, 6-2, 6-3, 6-12 to 6-14,
6-16, 6-17, 6-25 to 6-29,
6-43

Shared applications, CSee also
Shared programs)

effect of EPFs on existing, I:
4 - 8

Shared data, I: 8-1 to 8-7
determining the address of, I:

8-2
how to update atomically, I:

8-7, 8-8
ini t ia l iz ing, I : 8-3, 8-4
PMA subroutines for updating,

I: 8-9 to 8-11
process-wide, I: 8-1
system-wide, I: 8-1
using a process-class Library

EPF for, I: 8-5

Shared programs,
deleting old versions, I: 1-16
installing new versions, I:

1-8, 1-16
using SEG to build, I: 1-8

Shared system-wide segments, I:
1-8

Sharing faulted IPs, I: 4-9
how to avoid, I: 4-10

Sharing of pure code, I: 1-13

SHUTDN command, II: 1-26, 4-5

Simple pathname, II: 1-13

Simple program,
defined, I I I : 1-8

Simultaneous use of an EPF, I:
3-35

SLIST command, II: 4-9

Snapping dynamic links, I: 2-3,
3-21

Souroe code file, searching
directories for, II: 3-18

Index-25 Third Edition

Mvanoed Programmer's Guide, Volume 0

SPASSS subroutine, II: 4-7

Special /not-special attr ibute,
II: 1-38

SRCHSS subroutine, II: 1-17,
2-26, 2-27, 2-36, 2-38, 4-7,
4-8, 4-21, 4-23, 5-2, 5-7,
5-10, 5-15, 5-47, 5-48, 6-3,
6-4, 6-7, 6-30, 6-34, 6-36,
6-38

used to open file for VMFA
read, III: 4-19

SRSFXS subroutine, II: 1-17,
2-26, 2-27, 2-36, 2-38, 4-6,
4-24, 5-2, 5-7, 5-8, 5-17,
5-48, 6-3, 6-4, 6-6, 6-30,
6-34, 6-37, 6-43

used to open file for VMFA
read, III: 4-19

SSR CSee SET_SEAROLRULES)

Stack base, I: 3-4

Stack frame, I: 3-4
addresses of in DUMP_STACK

command, I: 9-9
locating prooedure, I: 9-10

Stack frames,
releasing, I I I : 5-6

Stack header, I: 3-4

Stack space,
in EPFs, I: 3-3
in subroutines, I: 3-4

Stack, command processor, III:
5-1

Stacking program EPFs, I: 1-17

Standard command processor, III:
1-20

CSee also Command processor)

START command, III: 5-14

Static data, I: 3-7

Static information and EPFs,
command line information, I:

4 - 7
error information, I: 4-7

Static memory, I: 1-9

Static resources, III: 6-2
cache attach point, III: 6-2
escape sequences sent to

terminal , III: 6-4
file names, III: 6-3
user's display screen, III:

6 - 3

Static storage,
and recusive invocation, III:

4-54

Static-mode, CSee also
Static-mode applications)

limits on flexibility of
programs, III: 4-1

program, I: 1-5
runfile, searching for, II:

3-7

Static-mode applications, CSee
also Static-mode program)

conversion strategy, I: 4-1
relation of EPFs to, I: 4-1
restriction on EPF use of, I:

4-2
suspending and continuing, I:

4-2

Static-mode library, I: 3-28;
II: 3-16

dynamic link to, I: 3-28
replacing, I: 3-30
restriction on EPF use of, I:

4-4

Static-mode program,
characteristics of, I: 1-6,

1-7
invoker, I I I : 2-7

STDCPS subroutine, III: 1-20

Storage, II: 1-2
stat ic , I I I : 4-54

STORAGE condition, III: 1-15

Third Edition Index-26

Master Index

Sub-UFD (See Lower-level
D i rec to ry)

Subdirectory (See Lower-level
D i rec to ry)

Subroutine (continued)
ENTSRD, II: 2-31, 6-30, 8-1 to

Subroutine,
EPF)

ACSCAT,
ACSCHG,
ACSDFT,
ACSLIK,
ACSI_3T,
ACSRVT,
ACSSET,

(See also library

8-3
FILSDL, II: 2-38, 4-7, 5-18
GPASSS, II: 4-7
GPATHS, II: 4-7, 4-18, 4-20,

4-24, 6-13

II: 2-19, 7-2, 7-5
II: 7-2, 7-6, 7-7, 7-9
II: 2-17, 7-2, 7-3
II: 2-20, 7-8
II: 7-2, 7-9, 7-10
II: 4-7
II: 2-18, 2-21, 7-2,

7-4, 7-6
ATS, II: 2-15, 4-5, 4-7, 4-8,

4-10
ATSABS, II: 2-15, 4-5, 4-7 to

I :
invoking EPFs, I: 3-5
linkage text, I: 3-4
nonreentrant process-class,

6-20
optimizing conversion approach

to, I: 6-25 to 6-28
organization of, I: 3-4
PHANTS, II: 4-7
PHNTMS, II: 4-7
procedure code, I: 3-4
process-class, I: 6-15
program-class, I: 6-15

4-9, 4-11 PRWFSS, II: 2-35, 5-2, 5-16 to
ATS ANY, II: 2-15, 4-5, 4-7, 5-18, 5-20, 5-29, 5-31 to

4-8, 4-13, 4-14 5-42
ATSHOM, II: 2-8, 2-14, 4-1, QSREAD, II: 9-1, 9-3

4-6, 4-8 QSSET, II: 9-5
ATSCR, II: 2-13, 4-1, 4-2, 4-6 RJT.TNS, II: 5-2, 5-24 to 5-26,
ATSREL, II: 2-15, 4-6, 4-7, 5-31

4-16, 4-17 RESTSS, II: 4-7
ATCHSS, II: 4-6 RESUSS, II: 4-7
CALACS, II: 7-9 SATRSS, II: 2-9, 4-7, 8-6,
c a l l s , II: 2-2 8-8, 8-10, 10-3
CHSMOD, II: 5-47 SAVESS, II: 4-7
CLOSFN, II: 2-36, 5-21, 5-23, SGDSDL, II: 2-34, 2-38, 5-18,

5-48 6-2, 6-3, 6-24, 6-25
CLOSFU, II: 2-36, 5-21, 5-22, SGDSEX, II: 5-47, 5-48, 6-2,

5-48, 6-2, 6-4 6-3
CLOSSA, II: 2-37 SGDSOP, II: 5-2, 5-7, 5-9,
CNAMSS, II: 4-7, 6-43 5-48, 6-2, 6-3, 6-17, 6-19,
OOMISS, II: 4-7 6-22
OOMOSS, II: 4-7 SGCRSS, II: 2-31, 2-34, 6-2,
converting nonreentrant to 6-3, 6-12 to 6-14, 6-16,

reentrant, I: 6-21 to 6-25 6-17, 6-25 to 6-29, 6-43
CREASS, II: 2-24, 4-7 SPASSS, II: 4-7
GREPWS, II: 2-25, 4-7 SRCHSS, II: 1-17, 2-26, 2-27,
determining class requirements 2-36, 2-38, 4-7, 4-8, 4-21,

o f , I: 6-15, 6-16 4-23, 5-2, 5-7, 5-10, 5-15,
determining the use of static 5-47, 5-48, 6-3, 6-4, 6-7,

data by, I: 6-17, 6-18 6-30, 6-34, 6-36, 6-38
DIRSCR, II: 2-24, 6-30, 6-32, SRSFXS, II: 1-17, 2-26, 2-27,

6-34 2-36, 2-38, 4-6, 4-24, 5-2,
DIRSLS, II: 2-31 5-7, 5-8, 5-47, 5-48, 6-3,
DIRSRD, II: 1-29, 2-31, 6-30, 6-4, 6-6, 6-30, 6-34, 6-37,

6-39 to 6-41, 8-1, 8-3 6-43
DIRSSE, II: 2-31 stack space, I: 3-4
dynamic Unking of, I: 2-1

Index-27 Third Edition

Advanced Programmer's Guide, Volume 0

Subroutine (continued)
storing data in linkage area

of, I: 6-18
TSRCSS, II: 2-26
WTLINS, II: 2-35, 5-2, 5-24,

5-27, 5-29

Subroutine libraries, I: 2-1
types of, I: 2-2

Subroutine not found condition,
I: 2-4

Suffixes, I I : 3-7
search order of, III: 1-10,

4-3

Surfaces, II: 1-5

Suspended programs,
restar t ing, I I I : 5-7

SYMBOL,
as a subcommand of BIND, I:

3-11, 8-2, 8-4
to locate common areas, I:

3-11

System Administrator,
default search rules, II: 3-4

System file, II: 1-10

System primitives, II: 2-3

System prompts, III: 5-5

System search rules, II: 3-4
in search rules file, II: 3-10
location in list, II: 3-13
prooess in i t ia l izat ion, I I :

3-11
reset to, II: 3-11

SYSTEH_STCRAGE$ condition, III:
1-15

Terminal I/O,

Terminal I/O (continued)
redirection during recursive

invocation of EPFs, III:
4-55

Terminating an EPF, I: 3-6,
3-30, 3-31

Text ,
re t r ieva l , I I : 5 -1
storage, II: 5-1
str ings, I I : 5-1

Text file, II: 5-1
(See also Fixed-length record

file; Variable-length record
fi l e)

accessing, II: 5-2
compression, II: 5-24
current position, II: 5-25
input line, II: 5-25
maximum line length, II: 5-25
open file unit, II: 5-29
opening, II: 5-6
output line, II: 5-25
positioning to end, II: 5-15
read variable-length, II: 5-24
reading, II: 5-6
wri te var iable- length, I I :

5-24
wr i t ing, I I : 5-6
writing lines to, II: 5-29

Tilde, use of, III: 2-2

Top-level directory, II: 1-8

Tracks, II: 1-5

Tree structure,
creating, II: 1-5

Treewalk bit, III: 3-22, 4-31

Treewalking,
handled by command prooessor,

II I : 2-6
in command processing

information, II I : 3-22
in epf-info structure, III :

4-31
options for, III: 2-6

Third Edition Index-28

Master Index

Treewalking (continued)
specified in command

informat ion s t ructure, I I I
4-23

specified in epf -inf o
structure, I I I : 4-31

Truncating a file, II: 1-29,
5-17

TSRCSS subroutine, II: 2-26
used to open file for VMFA

read, II I : 4-19

T^npes of EPFs, I: 1-3

U

UEanapping an EPF, I: 3-34

User fi le , I I : i - io

User programs,
recursive invocation of, III

6-1

User-defined search list, II:
3-2

User-written functions,
command environment support

fo r, I I I : 1 -7

UserHtfritten programs,
command environment support

fo r, I I I : 1 -6

Users,
search lists of, II: 3-2

Variable-length record file,
compression character, II:

5-44
format, II: 5-42
pad character, II: 5-43
space compression, II: 5-43

Variable-length records, II: 5-3
advantages, II: 5-3
termination character, II: 5-3

-VERIFY bit, III: 3-21

-VERIFY option,
handled by command prooessor,

I I I : 2-7

Virtual memory file access read
(VMFA-read), II: 1-24

VPSD command, I: 1-18, 9-8

V-mode programs, I: 1-5

Variable references, evaluation
of , I I I : 2 -4

-WAI£_JFRCM bit, III: 3-22

-WAL^_TO bit, III: 3-22

Wildcard bit, III: 3-22, 4-31

Wildcards,
handled by command prooessor,

I I I : 2-6
in command processing

information, I I I : 3-21
in epf- info structure, I I I :

4-31
options for, III: 2-6

Writing file system objects, II:
2-34

Writing files, II: 2-35

Writing segment directories, II:
2-34

WTLINS subroutine, II: 2-35,
5-2, 5-24, 5-27, 5-29

Index-29 Third Edition

Surveys

Reader Response Form

Advanced Programmer's Guide, Volume 0: Introduction and Error Codes
DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our
user publications.

1. How do you rate this document for overall usefulness?

I | excellent 1 | very good I I good □/<-> \~]poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I I Much better □ Slightly better Q About the same
I I Much worse I I Slightly worse I I Can't judge

5. Which other companies' manuals have you read?

Name:
Position:_
Company:
Address-—

Postal Code:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	About This Book
	vii
	viii
	Prime Documentation Conventions
	ix
	Chapter 1
	Calling Sequences and Coding Guidelines
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	Appendices
	Appendix A
	PRIMOS Error Codes
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	Appendix B
	Alphabetical List of Error Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	Appendix C
	New Features of Recent PRIMOS Revisions
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Master Index
	Key to Master Index
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Syrveys
	
	

